Joseph et al.
JOCArticle
action of silver mainly takes place through its interactions
with sulfur in the case of amino acids and peptides,2 and Ag+
ions are inactive toward other amino acids. A side effect of
silver originating from its prolonged use is irreversible
darkening of the skin and mucous membrane.3 Accumula-
tion of silver by microbial species could also act as a source
for this element.4 Among the 20 naturally occurring amino
acids, Cys plays an important role in living cells.5 Both the
deficiency and excess accumulation of Cys are detrimental to
life.6 Therefore, the detection and sensing of silver and Cys,
by a single molecular system with dual functionality, are
certainly challenging and are intriguing to the current re-
searchers. Owing to the ubiquitous nature of calix[4]arenes7
by possessing hydrophilic and hydrophobic characters to-
gether in the same structure, these molecules can act as good
mimics of enzymes8 and also provide a suitable platform for
building appropriate binding cores. There are some reports
in the literature for the selective recognition of silver either by
recognition by calix[4]arene derivatives is rather limited, and
the recognitions were mainly carried out by mass spectro-
scopy,12 calorimetry,13 1H NMR studies,13b,c,14 and HPLC;15
detection by fluorescence spectroscopy16 is scarce. Coleman
et al. reported several p-sulfonatocalix[4]arenes for amino
acid recognition and were able to establish the structure of
these calixarene amino acid complexes even in the solid
state.17 There are few reports available in the literature in
which amino acid recognition was achieved by chemo sen-
sing ensemble.12b,18 Though there are several receptors to
recognize Agþ and Cys individually, to the best of our
knowledge, there has been no report of any calix[4]arene
molecular system that would detect selectively Agþ followed
by Cys by acting as primary as well as secondary sensor. Thus
the present paper reports the synthesis, characterization, and
ratiometric silver-sensing properties of a lower rim functio-
nalized calix[4]arene possessing dipicolyl moiety connected
through an amide linkage (L) and the recognition of Cys by
the corresponding silver complex. Thus L acts as a primary
sensor toward Agþ and as a secondary sensor toward Cys
and thereby exhibits INH logic gate properties. The sensor
property of L toward Agþ has been proven to be due to the
formation of the complex on the basis of different experi-
mental and computational studies. Experimental evidence
has also been provided for the release of L from the reaction
of Cys with the silver complex.
1
potentiometry,9 by H NMR,10 or by fluorescence techni-
que11 using calix[4]arene derivatives. Similarly, amino acid
(2) Mcdonnell, G.; Russell, D. A. Clin. Microbiol. Rev. 1999, 12, 147.
(3) (a) Butkus, M. A.; Labare, M. P.; Starke, J. A.; Moon, K.; Talbot, M.
Appl. Environ. Microbiol. 2004, 70, 2848. (b) Petering, H. G. Pharmaolc.
Ther. A 1976, 1, 127. (c) Russell, A. D.; Hugo, W. B. Prog. Med. Chem. 1994,
31, 351.
(4) Slawson, R. M.; Van Dyke, M. I.; Lee, H.; Trevors, J. T. Plasmid 1992,
27, 72.
Results and Discussion
(5) (a) Ball, R. O.; Courtney-Martin, G.; Pencharz, P. B. J. Nutr. 2006,
136, 1682S. (b) Griffith, W. Method Enzymol. 1987, 143, 366.
(6) (a) Shahrokhian, S. Anal. Chem. 2001, 73, 5972. (b) Heafield, M. T.;
Fearn, S.; Steventon, G. B.; Waring, R. H.; Williams, A. C.; Sturman, S. G.
Neurosci. Lett. 1990, 110, 216. (c) Puka-Sundvall, M.; Eriksson, P.; Nilsson,
M.; Sandberg, M.; Lehmann, A. Brain Res. 1995, 705, 65.
Receptor Molecule L. The receptor molecule, L, has been
synthesized by four known steps starting from p-tert-butyl
calix[4]arene as given in Scheme 1,19 (see also Experimental
Section). The acid chloride derivative 4 was prepared by
reacting 3 with SOCl2, followed by coupling with bis(2-picolyl)-
amine to result in the receptor molecule, L. All of these
molecules including L were characterized satisfactorily by 1H
NMR, 13C NMR, ESI MS, FTIR, and elemental analysis. The
(7) (a) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161. (b) Shinkai, S.
Tetrahedron 1993, 49, 8933.
(8) (a) Izzet, G.; Douziech, B.; Prange, T.; Tomas, A.; Jabin, I.; Mest,
Y. L.; Reinaud, O. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6831.
(b) Rondelez, Y.; Bertho, G.; Reinaud, O. Angew. Chem., Int. Ed. 2002,
41, 1044. (c) Cacciapaglia, R.; Casnati, A.; Mandolini, L.; Reinhoudt, D. N.;
Salvio, R.; Sartori, A.; Ungaro, R. J. Am. Chem. Soc. 2006, 128, 12322.
(d) Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1999,
64, 6337. (e) Molenveld, P.; Stikvoort, W. M. G.; Kooijman, H.; Spek, A. L.;
Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1999, 64, 3896.
(f) Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N. Angew. Chem.,
Int. Ed. 1999, 38, 3189.
(9) (a) Kumar, M.; Mahajan, R. K.; Sharma, V.; Singh, H.; Sharma, N.;
Kaur, I. Tetrahedron Lett. 2001, 42, 5315. (b) Zeng, X.; Weng, L.; Chen, L.;
Leng, X.; Zhang, Z.; He, X. Tetrahedron Lett. 2000, 41, 4917. (c) Zeng, X.;
Weng, L.; Chen, L.; Leng, X.; Ju, H.; He, X.; Zhang, Z.-Z. J. Chem. Soc.,
Perkin Trans. 2 2001, 545.
1
cone conformation of L has been confirmed by H NMR
spectroscopy and also by the structure determined on the basis
of single crystal X-ray diffraction, as reported in this paper.
Crystal Structure of L. The ligand L was crystallized by slow
diffusion of diethyl ether into a solution containing L in a mix-
ture of methanol and chloroform, and the structure was deter-
mined by single crystal XRD (Supporting Information, S01).
(10) (a) Creaven, B. S.; Deasy, M.; Flood, P. M.; McGinley, J.; Murray,
B. A. Inorg. Chem. Commun. 2008, 11, 1215. (b) Wong, M. S.; Xia, P. F.;
Zhang, X. L.; Lo, P. K.; Cheng, Y.-K.; Yeung, K.-T.; Guo, X.; Shuang, S.
J. Org. Chem. 2005, 70, 2816. (c) Struck, O.; Chrisstoffels, L. A. J.;
Lugtenberg, R. J. W.; Verboom, W.; van Hummel, G. J.; Harkema, S.;
Reinhoudt, D. N. J. Org. Chem. 1997, 62, 2487. (d) Kim, S. K.; Lee, J. K.;
Lee, S. H.; Lim, M. S.; Lee, S. W.; Sim, W.; Kim, J. S. J. Org. Chem. 2004, 69,
2877. (e) Wong, M. S.; Xia, P. F.; Lo, P. K.; Sun, X. H.; Wong, W. Y.;
Shuang, S. J. Org. Chem. 2006, 71, 940. (f) Zeng, X.; Sun, H.; Chen, L.; Leng,
X.; Xu, F.; Li, Q.; He, X.; Zhang, W.; Zhang, Z.-Z. Org. Biomol. Chem. 2003,
1, 1073. (g) Kim, J. S.; Yang, S. H.; Rim, J. A.; Kim, J. Y.; Vicens, J.; Shinkai,
S. Tetrahedron Lett. 2001, 42, 8047. (h) Budka, J.; Lhotak, P.; Stibor, I.;
Michlova, V.; Sykora, J.; Cisarova, I. Tetrahedron Lett. 2002, 43, 2857.
(11) Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J.
J. Org. Chem. 2003, 68, 597.
(14) (a) Douteau-Guevel, N.; Coleman, A. W.; Morel, J.-P.; Morel-
Desrosiers, N. J. Phys. Org. Chem. 1998, 11, 693. (b) Da Silva, E.; Coleman,
A. W. Tetrahedron 2003, 59, 7357. (c) Arena, G.; Contino, A.; Gulino, F. G.;
Magri, A.; Sansone, F.; Sciotto, D.; Ungaro, R. Tetrahedron Lett. 1999, 40,
1597. (d) Frish, L.; Sansone, F.; Casnati, A.; Ungaro, R.; Cohen, Y. J. Org.
Chem. 2000, 65, 5026. (e) Casnati, A.; Fabbi, M.; Pelizzi, N.; Pochini, A.;
Sansone, F.; Ungaro, R. Bioorg. Med. Chem. Lett. 1996, 6, 2699. (f) Baldini,
L.; Casnati, L.; Sansone, F.; Ungaro, R. Chem. Soc. Rev. 2007, 36, 254.
(g) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713. (e) Casnati, A.; Sansone,
F.; Ungaro, R. Acc. Chem. Res. 2003, 36, 246.
(15) Kalchenko, O. I.; Da Silva, E.; Coleman, A. W. J. Inclusion Phenom.
Macrocyclic Chem. 2002, 43, 305.
(16) (a) Lu, J. Q.; Zhang, L.; Sun, T. Q.; Wang, G. X.; Wu, L. Y. Chin.
Chem. Lett. 2006, 17, 575. (b) Li, H.; Wang, X. Photochem. Photobiol. Sci.
2008, 7, 694.
(12) (a) Stone, M. M.; Franz, A. H.; Lebrilla, C. B. J. Am. Soc. Mass
Spectrom. 2002, 13, 964. (b) Perret, F.; Morel-Desrosiers, N.; Coleman,
A. W. J. Supramol. Chem. 2002, 2, 533.
(17) (a) Perret, F.; Lazar, A. N.; Coleman, A. W. Chem. Commun. 2006,
ꢀ
2425. (b) Selkti, M.; Coleman, A. W.; Nicolis, I.; Douteau-Guevel, N.;
(13) (a) Zielenkiewicz, W.; Marcinowicz, A.; Cherenok, S.; Kalchenko,
V. I.; Poznanski, J. Supramol. Chem. 2006, 18, 167. (b) Arena, G.; Casnati,
A.; Contino, A.; Magri, A.; Sansone, F.; Sciotto, D.; Ungaro, R. Org.
Villain, F.; Tomas, A.; de Rango, C. Chem. Commun. 2000, 161. (c) Lazar,
A. N.; Danylyuk, O.; Suwinska, K.; Coleman, A. W. J. Mol. Struct. 2006,
825, 20.
ꢀ
Biomol. Chem. 2006, 4, 243. (c) Douteau-Guevel, N.; Perret, F.; Coleman,
A. W.; Morel, J.-P.; Morel-Desrosiers, N. J. Chem. Soc., Perkin Trans. 2
(18) Ait-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am.
Chem. Soc. 2001, 123, 11296.
ꢀ
2002, 524. (d) Douteau-Guevel, N.; Coleman, A. W.; Morel, J.-P. ; Morel-
Desrosiers, N. J. Chem. Soc., Perkin Trans. 2 1999, 629.
(19) Joseph, R.; Ramanujam, B.; Acharya, A.; Rao, C. P. Tetrahedron
Lett. 2009, 50, 2735.
8182 J. Org. Chem. Vol. 74, No. 21, 2009