Published on Web 08/20/2008
Total Synthesis of Chlorofusin, Its Seven Chromophore
Diastereomers, and Key Partial Structures
Ryan C. Clark, Sang Yeul Lee, and Dale L. Boger*
Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
Received February 20, 2008; E-mail: boger@scripps.edu
Abstract: Chlorofusin is a recently isolated, naturally occurring inhibitor of p53-MDM2 complex formation
whose structure is composed of a densely functionalized azaphilone-derived chromophore linked through
the terminal amine of ornithine to a nine residue cyclic peptide. Herein we report the full details of the total
synthesis of chlorofusin, resulting in the assignment of the absolute stereochemistry and reassignment of
the relative stereochemistry of the complex chromophore. Condensation of each enantiomer of an azaphilone
chromophore precursor with the Nδ-amine of a protected ornithine-threonine dipeptide, followed by a one-
step oxidation/spirocyclization of the most reactive olefin provided all eight diastereomers of the fully
elaborated chromophore-dipeptide conjugate. Comparison of the spectroscopic properties for these eight
compounds and those of simpler models with that reported for the natural product allowed the full assignment
of the (4R,8S,9R)-stereochemistry of the chlorofusin chromophore. The natural, but stereochemically
reassigned, diastereomer of the dipeptide conjugate was incorporated in a convergent total synthesis of
chlorofusin confirming the stereochemical reassignment and establishing its absolute stereochemistry.
Similarly and enlisting the late stage convergent point in the total synthesis, the remaining seven
diastereomers of the chromophore-dipeptide conjugates were individually incorporated into the nine-residue
cyclic peptide of chlorofusin (4 steps each) providing all seven remaining possible chromophore
diastereomers of the natural product.
as an attractive target for therapeutic intervention.4,17 An X-ray
crystal structure of the N-terminal domain of MDM2 bound to
Introduction
The tumor suppressor p53 is an important part of an innate
cancer defense mechanism and acts as a transcription factor that
initiates cell cycle arrest and apoptosis in response to stress such
as DNA damage.1–4 The activity of p53 is modulated by MDM2
(HDM2), which tightly binds p53 preventing it from acting as
a regulator of cell division5–7 and targeting it for nuclear export
and degradation.8,9 Overexpression of MDM2 has been impli-
cated in many cancers,10–16 defining the p53-MDM2 interaction
a 15-residue transactivation domain of p53 revealed the
structural details of their complex that is mediated by the
interaction of three hydrophobic residues of a p53 R-helix with
a hydrophobic cleft of MDM2.18 Molecules that bind the
hydrophobic cleft of MDM2 disrupt this protein-protein
interaction with p53, restoring its regulatory function and
inhibiting tumor growth.4,19–22
Chlorofusin (1, Figure 1) was isolated from the fungal strain
Microdochium caespitosum23 and found to disrupt the p53-
MDM2 interaction by directly binding to the N-terminal domain
of MDM2 (IC50 ) 4.6 µM, KD ) 4.7 µM).23,24 Thus, chlorofusin
represents an exciting lead for antineoplastic intervention that
(1) Levine, A. J.; Momand, J.; Finlay, C. A. Nature 1991, 351, 453.
(2) Vousden, K. H. Cell 2000, 103, 691.
(3) Shen, Y.; White, E. AdV. Cancer Res. 2001, 82, 55.
(4) Chène, P. Nat. ReV. Cancer 2003, 3, 102.
(5) Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. J.
Cell 1992, 69, 1237.
(6) Chen, J.; Marechal, V.; Levine, A. J. Mol. Cell. Biol. 1993, 13, 4107.
(7) Oliner, J. D.; Pietenpol, J. A.; Thiagalingam, S.; Gyuris, J.; Kinzler,
K. W.; Vogelstein, B. Nature 1993, 362, 857.
(16) Eymin, B.; Gazzeri, S.; Brambilla, C.; Brambilla, E. Oncogene 2002,
21, 2750.
(17) Zhang, R.; Wang, H. Curr. Pharm. Des. 2000, 6, 393.
(18) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.;
Levine, A. J.; Pavletich, N. P. Science 1996, 274, 948.
(19) Bullock, A. N.; Fersht, A. R. Nat. ReV. Cancer 2001, 1, 68.
(20) Fischer, P. M.; Lane, D. P. Trends Pharmacol. Sci. 2004, 25, 343.
(21) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.;
Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi,
N.; Liu, E. A. Science 2004, 303, 844.
(8) Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Nature 1997, 387, 296.
(9) Kubbutat, M. H. G.; Jones, S. N.; Vousden, K. H. Nature 1997, 387,
299.
(10) Fakharzadeh, S. S.; Trusko, S. P.; George, D. L. EMBO J. 1991, 10,
1565.
(11) Brown, D. R.; Thomas, C. A.; Deb, S. P. EMBO J. 1998, 17, 2513.
(12) Capoulade, C.; Paillerets, B. B.-d.; Lefrére, I.; Ronsin, M.; Feunteun,
J.; Tursz, T.; Wiels, J. Oncogene 1998, 16, 1603.
(22) Zhang, R.; Mayhood, T.; Lipari, P.; Wang, Y.; Durkin, J.; Syto, R.;
Gesell, J.; McNemar, C.; Windsor, W. Anal. Biochem. 2004, 331, 138.
(23) Duncan, S. J.; Grüschow, S.; Williams, D. H.; McNicholas, C.;
Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S. K.; Moore,
M. J. Am. Chem. Soc. 2001, 123, 554. Correction: J. Am. Chem. Soc.
2002, 124, 14503.
(13) Juven-Gershon, T.; Oren, M. Mol. Med. 1999, 5, 71.
(14) Leite, K. R. M.; Franco, M. F.; Srougi, M.; Nesrallah, L. J.; Nesrallah,
A.; Bevilacqua, R. G.; Darini, E.; Carvalho, C. M.; Meirelles, M. I.;
Santana, I.; Camara-Lopes, L. H. Mod. Pathol. 2001, 14, 428.
(15) Polsky, D.; Bastian, B. C.; Hazan, C.; Melzer, K.; Pack, J.; Houghton,
A.; Busam, K.; Cordon-Cardo, C.; Osman, I. Cancer Res. 2001, 61,
7642.
(24) Duncan, S. J.; Cooper, M. A.; Williams, D. H. Chem. Commun. 2003,
316.
9
10.1021/ja8012819 CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 12355–12369 12355