Tsang et al.
quently, new molecules with a 4-alkoxycarbazole core have been
developed for the treatment of obesity and type II diabetes.9
to our investigations, Du Bois, Che, and their respective co-
workers had demonstrated that a metal-catalyzed sequence
converting an alkyl C-H bond to a C-N bond can be quite
efficient.15-18 On the basis of successful applications of direct
arylation of arene C-H bonds in recent years19 and our long-
standing interest in the formation of aromatic C-N bonds,20
we felt that it should be possible to realize an overall substitution
reaction where an arene C-H bond is replaced with a C-N
bond. In late 2005,21 our laboratory reported a new strategy for
assembling simple unsymmetrical carbazoles by combining
sequential palladium-catalyzed C-H functionalization and C-N
bond-forming reactions, although the substrate scope was limited
to molecules containing functional groups that were compatible
with the co-oxidant Cu(OAc)2. This method was recently
adopted by Shi as a part of an elegant sequence for the synthesis
of unsymmetrical carbazoles such as 4-deoxycarbazomycin B.22
To address the shortcomings of our earlier work, we decided
to expand our research to address the issue of the functional
group compatibility, to study the reaction mechanism, and to
apply the method to the synthesis of naturally occurring
carbazoles. Herein we report our progress toward achieving these
goals.
In addition to their use in medicinal chemistry, carbazoles
have attracted increasing attention from the community of
material scientists owing to their potential in photophysical and
optoelectronic applications. Polyvinylcarbazole (PVK) has been
extensively investigated for its use in photorefractive materials
and xerography, while N-ethylcarbazole (ECz) was recognized
as an effective charge-transporting functional plasticizer for PVK
and other doped polymers.10 In the past decade, carbazole
compounds were intensively investigated for the development
of optoelectronic applications such as polymeric light-emitting
diodes (PLED)10a,c,11 and organic light-emitting devices
(OLED).12-14 In particular, it was found that certain carbazole
oligomers led to a family of host materials that were suitable
for the electrophosphorescence of blue lights,12,13 a critical
component for the fabrication of commercial OLED displays.
In view of these important applications, we set out to develop
a metal-catalyzed synthesis of unsymmetrical carbazoles. Prior
(6) (a) Guthrie, R. W.; Brossi, A.; Mennona, F. A.; Mullin, J. G.; Kierstead,
R. W.; Grunberg, E. J. Med. Chem. 1975, 18, 755–760. (b) Cranwell, P. A.;
Saxton, J. E. J. Chem. Soc. 1962, 3482–3487. (c) Woodward, R. B.; Iacobucci,
G. A.; Hochstein, F. A. J. Am. Chem. Soc. 1959, 81, 4434–4435.
(7) (a) Cheng, H.-Y.; Randall, C. S.; Holl, W. W.; Constantinides, P. P.;
Yue, T.-L.; Feuerstein, G. Z. Biochim. Biophys. Acta 1996, 1284, 20–28. (b)
Yue, T.-L.; Cheng, H.-Y.; Lysko, P. G.; McKenna, P. J.; Feuerstein, R.; Gu,
J.-L.; Lysko, K. A.; Davis, L. L.; Feuerstein, G. J. Pharmacol. Exp. Ther. 1992,
263, 92–98.
(15) For recent reviews related to C-H amination, see: (a) Dick, A. R.;
Sanford, M. S. Tetrahedron 2006, 62, 2439–2463. (b) Davies, H. M. L.; Long,
M. S. Angew. Chem., Int. Ed. 2005, 44, 2–4. (c) Sigman, M. S.; Schultz, M. J.
Org. Biomol. Chem. 2004, 2, 2551–2554. (d) Stahl, S. Angew. Chem., Int. Ed.
2004, 43, 3400–3420. (e) Mu¨ller, P.; Fruit, C. Chem. ReV. 2003, 103, 2905–
2919.
(8) (a) Dubois, E. A.; van den Bos, J. C.; Doornbos, T.; van Doremalen,
P. A. P. M.; Somsen, G. A.; Vekemans, J. A. J. M.; Janssen, A. G. M.; Batink,
H. D.; Boer, G. J.; Pfaffendorf, M.; van Royen, E. A.; van Zwieten, P. A. J. Med.
Chem. 1996, 39, 3256–3262. (b) Costin, B.; O’Donnell, S. R.; Wanstall, J. C.
J. Pharm. Pharmacol. 1983, 35, 590–592. (c) Cohen, M. L.; Ruffolo, R. R., Jr.;
Wiley, K. S. J. Pharmacol. Exp. Ther. 1980, 215, 325–331. (d) Innis, R. B.;
Correˆa, F. M. A.; Snyder, S. H. Life Sci. 1979, 24, 2255–2264.
(9) (a) Czeskis, B. A.; Wheeler, W. J. J. Label. Compd. Radiopharm. 2005,
48, 407–419. (b) Nakajima, Y.; Hamashima, H.; Washizuka, K.-I.; Tomishima,
Y.; Ohtake, H.; Imamura, E.; Miura, T.; Kayakiri, H.; Kato, M. Bioorg. Med.
Chem. Lett. 2005, 15, 251–254. (c) Kumar, R.; Ramachandran, U.; Srinivasan,
K.; Ramarao, P.; Raichur, S.; Chakrabarti, R. Bioorg. Med. Chem. 2005, 13,
4279–4290. (d) Sum, F.-W.; Wong, V.; Han, S.; Largis, E.; Mulvey, R.; Tillett,
J. Bioorg. Med. Chem. Lett. 2003, 13, 2191–2194.
(10) (a) Morin, J.-F.; Leclerc, M.; Ade`s, D.; Siove, A. Macromol. Rapid
Commun. 2005, 26, 761–778. (b) Ostroverkhova, O.; Moerner, W. E. Chem.
ReV. 2004, 104, 3267–3314. (c) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski,
J.; Pielchowski, K. Prog. Polym. Sci. 2003, 28, 1297–1353. (d) Zhang, Y.; Wada,
T.; Sasabe, H. J. Mater. Chem. 1998, 8, 809–828. (e) Meerholz, K.; Volodin,
B. L.; Sandalphon; Kippelen, B.; Peyghambarian, N. Nature 1994, 371, 497–
500.
(11) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks,
R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre´das, J. L.; Lo¨gdlund,
M.; Salaneck, W. R. Nature 1999, 397, 121–128.
(12) (a) Organic Light Emitting DeVices: Synthesis, Properties, and Ap-
plications; Mu¨llen, K., Scherf, U., Eds.; Wiley-VCH: Weinheim, Germany, 2006.
(b) Grigalevicius, S. Synth. Met. 2006, 156, 1–12. (c) Brunner, K.; van Dijken,
A.; Bo¨rner, H.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.
J. Am. Chem. Soc. 2004, 126, 6035–6042. (d) Thomas, K. R. J.; Lin, J. T.; Tao,
Y.-T.; Ko, C.-W. J. Am. Chem. Soc. 2001, 123, 9404–9411. (e) Baldo, M. A.;
O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest,
S. R. Nature 1998, 395, 151–154.
(13) (a) Tsai, M.-H.; Hong, Y.-H.; Chang, C.-H.; Su, H.-C.; Wu, C.-C.;
Matoliukstyte, A.; Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J. V.; Hsu,
C.-P. AdV. Mater. 2007, 19, 862–866. (b) Yeh, S.-J.; Wu, M.-F.; Chen, C.-T.;
Song, Y.-H.; Chi, Y.; Ho, M.-H.; Hsu, S.-F.; Chen, C. H. AdV. Mater. 2005, 17,
285–289. (c) Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F.
Appl. Phys. Lett. 2003, 83, 569–571. (d) Holmes, R. J.; Forrest, S. R.; Tung,
Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys.
Lett. 2003, 82, 2422–2424. (e) Adachi, C.; Kwong, R. C.; Djurovich, P.;
Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys.
Lett. 2001, 79, 2082–2084.
(16) For recent reviews of other C-H functionalization or activation
processes, see: (a) Godula, K.; Sames, D. Science 2006, 312, 67–72. (b) Sigman,
M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221–229. (c) Kakiuchi, F.;
Chatani, N. AdV. Synth. Catal. 2003, 345, 1077–1101. (d) Kakiuchi, F.; Murai,
S. Acc. Chem. Res. 2002, 35, 826–834. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. ReV. 2002, 102, 1731–1769. (f) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc.
Chem. Res. 2001, 34, 633–639. (g) Bringmann, G.; Menche, D. Acc. Chem.
Res. 2001, 34, 615–624. (h) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–
1712. (i) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879–2932. (j)
Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29,
977–991.
(17) (a) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem.
Soc. 2004, 126, 15378–15379. (b) Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew.
Chem., Int. Ed. 2004, 43, 4349–4352. (c) Fleming, J. J.; Fiori, K. W.; Du Bois,
J. J. Am. Chem. Soc. 2003, 125, 2028–2029. (d) Wehn, P. M.; Du Bois, J. J. Am.
Chem. Soc. 2002, 124, 12950–12951. (e) Espino, C. G.; Du Bois, J. Angew.
Chem., Int. Ed. 2001, 40, 598–600. (f) Espino, C. G.; Wehn, P. M.; Chow, J.;
Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935–6936.
(18) (a) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Che, C.-M. J. Org. Chem.
2004, 69, 3610–3619. (b) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.;
Che, C.-M. Angew. Chem., Int. Ed. 2002, 41, 3465–3468. (c) Reed, A. A.; White,
M. C. J. Am. Chem. Soc. 2008, 130, 3316–3318.
(19) (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am.
Chem. Soc. 2005, 127, 7330–7331. (b) Daugulis, O.; Zaitsev, V. G. Angew.
Chem., Int. Ed. 2005, 44, 4046–4048. (c) Kakiuchi, F.; Matsuura, Y.; Kan,
S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936–5945. (d) Cuny, G.; Bois-
Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2004, 126, 14475–14484. (e) Campeau,
L.-C.; Parisien, M.; Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186–
9187. (f) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am.
Chem. Soc. 2004, 126, 7460–7461. (g) Bedford, R. B.; Coles, S. J.; Hursthouse,
M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112–114. (h) Terao,
Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123,
10407–10408. (i) Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919–1925.
(j) Åkermark, B.; Eberson, L.; Jonsson, E.; Pettersson, E. J. Org. Chem. 1975,
40, 1365–1367.
(20) For recent reviews of Pd- and Cu-catalyzed carbon-heteroatom bond
formation processes, see: (a) Corbet, J.-P.; Mignani, G. Chem. ReV. 2006, 106,
2651–2710. (b) Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9, 625–655.
(c) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany,
2004; Vol. 2, pp 699-760. (d) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem.
ReV. 2004, 248, 2337–2364. (e) Ley, S. V.; Thomas, A. W. Angew. Chem., Int.
Ed. 2003, 42, 5400–5449. (f) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E.-I., de Meijere, A., Eds.; Wiley-
Interscience: New York, 2002; Vol. 1, pp 1051-1096.
(14) (a) Chen, C.-T. Chem. Mater. 2004, 16, 4389–4400. (b) Lamansky, S.;
Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows,
P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304–
4312. (c) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson,
M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622–1624. (d) Baldo, M. A.;
Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys.
Lett. 1999, 75, 4–6.
(21) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 14560–14561.
(22) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008,
47, 1115–1118.
7604 J. Org. Chem. Vol. 73, No. 19, 2008