T. Yamagami, M. Hatsuda, M. Utsugi, R. Kobayashi, Y. Moritani
SHORT COMMUNICATION
developed as potential therapeutic agents for the treatment of
type 2 diabetes, see: a) D. E. Moller, Nature 2001, 414, 821; b)
L. S. Bertram, D. Black, P. H. Briner, R. Chatfield, A. Cooke,
M. C. T. Fyfe, P. J. Murray, F. Naud, M. Nawano, M. Procter,
G. Rakipovski, C. M. Rasamison, C. Reynet, K. L. Schofield,
V. K. Shah, F. Spindler, A. Taylor, R. Turton, G. M. Williams,
P. Wong-Kai-In, K. Yasuda, J. Med. Chem. 2008, 51, 4340; c)
F. M. Matschinsky, Nature Rev. Drug Discov. 2009, 8, 399; d)
F. Li, Q. Zhu, Y. Zhang, Y. Feng, Y. Leng, A. Zhang, Bioorg.
Med. Chem. 2010, 18, 3875; e) Y. Zhang, Z. Han, F. Li, K.
Ding, A. Zhang, Chem. Commun. 2010, 46, 156; f) N. A.
Magnus, T. M. Braden, J. Y. Buser, A. C. DeBaillie, P. C.
Heath, C. P. Ley, J. R. Remacle, D. L. Varie, T. M. Wilson, Org.
Process Res. Dev. 2012, 16, 830; g) A. C. DeBaillie, N. A.
Magnus, M. E. Laurila, J. P. Wepsiec, J. C. Ruble, J. J. Petkus,
R. K. Vaid, J. K. Niemeier, J. F. Mick, T. Z. Gunter, Org. Pro-
cess Res. Dev. 2012, 16, 1538.
or (R)-N-benzylpantolactam (1.0 equiv.) were dissolved in toluene.
Et3N (2.0 equiv.) was added to the solution, and the resulting mix-
ture was stirred at –10 °C for 2 h. Citric acid and H2O were added
to the reaction solution. After warming to 25 °C, the resulting solu-
tion was separated. The organic layer was washed with 10% aq.
NaCl, dried with MgSO4, filtered, and concentrated under vacuum.
The residue was purified by chromatography on silica gel with
EtOAc/n-hexane (1:3 Ǟ 3:2) to give ester (R,R)-3 or (R,R)-5.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, and 1H and
13C NMR spectra of the products.
Acknowledgments
[8] Changing the solvent to THF or MeCN decreased the selectiv-
ity of (R,R)-[D]3a (THF: 11:1 dr, 87% yield; MeCN: 5:1 dr,
51% yield).
We are grateful to Prof. Dr. D. G. Blackmond for useful comments
and suggestions during the initial research on this mechanism.
[9] For the conditions of the deprotonation, see: A. E. Taggi,
A. M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J.
Am. Chem. Soc. 2002, 124, 6626.
[10] Surprisingly, excess NaH (2 equiv.) reduced the ratio of the es-
ter (1:2 dr, 39% yield).
[1] E. J. Corey, B. Czakο´, L. Kürti in Molecules and Medicine,
Wiley-Interscience, Hoboken, NJ, 2007.
[2] R. D. Larsen, E. G. Corley, P. Davis, P. J. Reider, E. J. J. Gra-
bowski, J. Am. Chem. Soc. 1989, 111, 7650.
[3] For a recent book on ketenes, see: T. T. Tidwell, Ketenes, 2nd
ed., Wiley, Hoboken, NJ, 2006.
[11] Acid-catalyzed reactions of ketenes with water or alcohols pro-
ceed with protonation of the β-carbon atom of ketenes, see: a)
P. J. Lillford, D. P. N. Satchell, J. Chem. Soc. B 1968, 889; b)
A. D. Allen, T. T. Tidwell, J. Am. Chem. Soc. 1987, 109, 2774;
c) A. D. Allen, A. Stevenson, T. T. Tidwell, J. Org. Chem. 1989,
54, 2843.
[12] Use of Me3N·HCl or pyridine·HCl instead of Et3N·HCl gave
ester (R,R)-3b with lower selectivity (Me3N·HCl: 19:1 dr, 24%
yield; pyridine·HCl: 2.4:1 dr, 20% yield).
[4] For reviews on ketene esterification, see: a) H. R. Seikaly, T. T.
Tidwell, Tetrahedron 1986, 42, 2587; b) C. Fehr, Angew. Chem.
1996, 108, 2726; Angew. Chem. Int. Ed. Engl. 1996, 35, 2566;
c) R. K. Orr, M. A. Calter, Tetrahedron 2003, 59, 3545; d) G. C.
Fu, Acc. Chem. Res. 2004, 37, 542; e) S. France, D. J. Guerin,
S. J. Miller, T. Leckta, Chem. Rev. 2003, 103, 2985; f) T. T.
Tidwell, Angew. Chem. 2005, 117, 6973; Angew. Chem. Int. Ed.
2005, 44, 6812; g) T. T. Tidwell, Eur. J. Org. Chem. 2006, 563;
h) J. T. Mohr, A. Y. Hong, B. M. Stoltz, Nature Chem. 2009, 1,
359; i) D. H. Paul, A. Weatherwax, T. Lectka, Tetrahedron
2009, 65, 6771.
[5] For examples of the use of (R)-pantolactone and its derivatives,
see: a) T. Durst, K. Koh, Tetrahedron Lett. 1992, 33, 6799; b)
M. Calms, J. Daunis, R. Jacquier, F. Natt, Tetrahedron 1994,
50, 6875; c) M. Calmes, J. Daunis, N. Mai, Tetrahedron: Asym-
metry 1997, 8, 1641; d) M. Calmes, J. Daunis, N. Mai, Tetrahe-
dron 1997, 53, 13719; e) P. Camps, F. Perez, N. Soldevilla, Tet-
rahedron: Asymmetry 1998, 9, 2065; f) R. Akkari, M. Calmes,
N. Mai, M. Rolland, J. Martinez, J. Org. Chem. 2001, 66, 5859;
g) P. Camps, D. M. Torrero, L. Sánchez, Tetrahedron: Asym-
metry 2004, 15, 311.
[13] Use of free Et3N with NaH instead of Et3N·HCl gave a mix-
ture containing ester (R,R)-3b with a 1.2:1 dr.
[14] For a recent book on hydrogen bonding, see: P. M. Pihko, Hy-
drogen Bonding in Organic Synthesis Wiley-VCH, Weinheim,
2009.
[15] C. E. Cannizzaro, K. N. Houk, J. Am. Chem. Soc. 2004, 126,
10992.
[16] Changing the solvent to THF slightly contributed to the selec-
tivity of ester (R,R)-3b (49:1 dr, 86% yield); however, the use
of polar CH3CN significantly decreased its selectivity (6:1 dr,
89% yield).
[17] (R)-N-Benzylpantolactam was recovered from the reaction
mixture by extraction with toluene under basic conditions
[59% yield based on (R,R)-5a, unoptimized].
[6] For the first patent, see: K. Sugawara, S. Toshikawa, PCT Int.
Appl. 2009, WO 2009139438 A1 20091119.
[7] Compound (R)-1a has been reported as a key intermediate for
the synthesis of glucokinase (GK) activators, which have been
[18] D. A. Evans, T. C. Britton, J. A. Ellman, Tetrahedron Lett.
1987, 28, 6141.
Received: September 11, 2013
Published Online: October 9, 2013
7470
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 7467–7470