Scheme 2
Figure 1. Known decafluoro- and pentafluorodiphenyl mono- and
diynes.
construct perfluorophenyl polyynes and to determine if the
solid-state behavior that had been observed for mono- and
diynes 1-6 would extend to longer derivatives. We report
herein the results of our efforts.
The synthesis of pentafluorodiphenyltriyne 7 (Scheme 1)
proved to be more challenging than expected. As in previous
frustratingly unsuccessful and resulted only in the formation
of baseline material. Nevertheless, with ketone 11 in hand,
the reaction with lithium trimethylsilyldiazomethane was
attempted.12 Satisfyingly, this provided for the desired
carbenoid intermediate and subsequent rearrangement to form
triyne 7. To our knowledge, this is the first reported example
of polyyne formation using Colvin’s reagent.12
Scheme 1
As encountered in efforts toward triyne 7, attempts to form
the unsymmetrical tetrayne 12 via a FBW rearrangement
from a dibromoolefinic precursor were not successful, even
using methods successful for the formation of other tetra-
ynes.7 Thus, an alternative approach was sought. The
formation of diyne 13 was readily developed from pentafluo-
robenzoyl chloride.13 Desilylation with tetrabutylammonium
fluoride (TBAF) at 0 °C gave the deprotected diyne 14, and
reaction with bromodiyne 15 (excess) under Cadiot-
Chodkiewicz conditions14 gave 12 in good yield.
Diyne 13 also, obviously, provided the basis for synthesis
of symmetrical tetrayne 16 (eq 1). Thus, desilylation with
TBAF at low temperature gave the terminal diyne, which
was immediately subjected to Hay oxidative homocoupling.15
The desired tetrayne 16 was isolated as a stable yellow solid
in 50% yield over the two steps.
triyne synthesis,7 a carbenoid Fritsch-Buttenberg-Wiechell
(FBW) rearrangement9 with dibromoolefin 8 was planned
to form the polyyne core. Thus, the acylation reaction10 of
trimethylsilylalkyne 98,11 with excess acid chloride 10 readily
gave ketone 11 in good yield. All attempts toward forming
8 under typical dibromoolefination conditions were, however,
The synthesis of hexayne 17 and octayne 18 (Scheme 3)
began from 9 and followed similar paths. A Friedel-Crafts
(7) For recent examples of polyyne formation using the FBW rear-
rangement, see: (a) Chalifoux, W. A.; Tykwinski, R. R. Chem. Rec. 2006,
6, 169–182. (b) Luu, T.; Elliott, E.; Slepkov, A. D.; Eisler, S.; McDonald,
R.; Hegmann, F. A.; Tykwinski, R. R. Org. Lett. 2005, 7, 51–54. (c) Eisler,
S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.;
Tywkinski, R. R. J. Am. Chem. Soc. 2005, 127, 2666–2676. (d) Eisler, S.;
Tykwinski, R. R. In Acetylene Chemistry: Chemistry, Biology, and Material
Science; Diederich, F.; Stang, P. J.; Tykwinski, R. R., Eds.; Wiley-VCH:
Weinheim, Germany, 2005. (e) Eisler, S.; Chahal, N.; McDonald, R.;
Tykwinski, R. R. Chem. Eur. J. 2003, 9, 2542–2550.
(12) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977,
869–874.
(13) See Supporting Information for details.
(14) Cadiot, P.; Chodkiewicz, W. In Chemistry of Acetylenes; Viehe,
H. G., Ed.; Marcel Dekker: New York, 1969; pp 597-647. For recent
examples of polyyne formation using the Cadiot-Chodkiewicz method,
see: Lee, S.; Lee, T.; Lee, Y. M.; Kim, D.; Kim, S. Angew Chem., Int. Ed.
2007, 46, 8422–8425. (c) Sabitha, G.; Reddy, C. S.; Yadav, J. S. Tetrahedron
Lett. 2006, 47, 4513–4516. (d) Gung, B. W.; Kumi, G. J. Org. Chem. 2003,
68, 5956–5960.
(8) Zhang, Y.; Wen, J. Synthesis 1990, 727–728.
(9) (a) Fritsch, P. Liebigs Ann. Chem. 1894, 279, 319–323. (b)
Buttenberg, W. P. Liebigs Ann. Chem. 1894, 279, 324–337. (c) Wiechell,
H. Liebigs Ann. Chem. 1894, 279, 337–344. (d) For a recent review, see:
Knorr, R. Chem. ReV. 2004, 104, 3795–3849.
(15) Hay, A. S. J. Org. Chem. 1962, 27, 3320–3321. For recent examples
of polyyne formation using the Hay and similar methods, see: de Quadras,
L.; Bauer, E. B.; Mohr, W.; Bohling, J. C.; Peters, T. B.; Mart´ın-Alvarez,
J. M.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2007, 129, 8296–
8309. Simpkins, S. M. E.; Weller, M. D.; Cox, L. R. Chem. Commun. 2007,
4035–4037. Zheng, Q.; Bohling, J. C.; Peters, T. B.; Frisch, A. C.; Hampel,
F.; Gladysz, J. A. Chem. Eur. J. 2006, 12, 6486–6505. Gibtner, T.; Hampel,
F.; Gisselbrecht, J.-P.; Hirsch, A. Chem. Eur. J. 2002, 8, 408–432.
(10) Walton, D. R. M.; Waugh, F. J. Organomet. Chem. 1972, 37, 45–
56.
(11) Chen, Q.-Y.; Li, Z.-T. J. Chem. Soc., Perkin Trans. 1 1992, 2931–
2934
.
2164
Org. Lett., Vol. 10, No. 11, 2008