M. Costas, L. Que, Jr. et al.
30 min at 258C under N2 to
a
vigorously stirred CH3CN solution
Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que, Jr., E. L. Bomi-
F. Banse, J.-F. Bartoli, T. A. Mattioli, P. Battioni, O. Horner, S. Bour-
kowski, M. Kerscher, A. Stubna, P. Comba, A. Lienke, E. Mꢁnck, L.
berg, C. Lopez de Laorden, R. Mas-Ballestꢃ, M. Merz, L. Que, Jr.,
3446; i) C. A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermꢁller, K.
2004, 2550; k) A. Thibon, J. England, M. Martinho, V. G. Young, Jr.,
J. R. Frisch, R. Guillot, J.-J. Girerd, E. Mꢁnck, L. Que, Jr., F. Banse,
(1.71 mL) containing the iron catalyst (2.0 mmol) and the substrate
(2000 mmol). The final concentrations of reagents were 1 mm iron catalyst
(1, 2, or 3), 10 mm H2O2, 1m H218O/32 mm H216O, and 1m substrate. After
syringe pump addition, the resulting solution was stirred for another
10 min. The reaction solutions were treated with 1-methylimidazole
(0.1 mL) and acetic anhydride (1 mL) to esterify the diol products follow-
ing the experimental procedure described above. The products were ana-
lyzed by GC and GC-MS.
Reaction catalytic conditions using H218O2:
(0.29 mL, 20 mmol; diluted from
a
70 mm H218O2 solution
a
2% H218O2 aqueous solution,
2100 mmol H216O) in CH3CN was delivered by syringe pump over 30 min
at 258C under N2 to a vigorously stirred CH3CN solution (1.71 mL) con-
taining the iron catalyst (2.0 mmol) and cyclooctene (2000 mmol). The
final concentrations of reagents were 1 mm iron catalyst (1), 10 mm
H218O2, 1m H2O, and 1m cyclooctene. After syringe pump addition, the
resulting solution was stirred for another 10 min. The reaction solutions
were treated with 1-methylimidazole (0.1 mL) and acetic anhydride
(1 mL) to esterify the diol products following the experimental procedure
described above. The products were analyzed by GC and GC-MS.
[5] A. Company, L. Gꢄmez, M. Gꢁell, X. Ribas, J. M. Luis, L. Que, Jr.,
[6] A. Company, L. Gꢄmez, X. Fontrodona, X. Ribas, M. Costas, Chem.
[7] For selected examples of Fe-TACN complexes in oxidation catalysis
see: a) V. B. Romakh, B. Therrien, G. Labat, H. Soekli-Evans, G. B.
Romakh, B. Therrien, G. Sꢁss-Fink, G. B. Shul’pin, Inorg. Chem.
Full experimental data as well as details for the analysis of the isotopic
labeling studies are provided as Supporting Information.
[8] For simplicity, the cis-diol term will be used in this manuscript to
refer to the diol product resulting from a stereospecific cis-dihydrox-
ylation reaction.
[9] a) K. Chen, M. Costas, J. Kim, A. K. Tipton, L. Que, Jr., J. Am.
[10] a) D. QuiÇonero, K. Morokuma, D. G. Musaev, R. Mas-Ballestꢃ, L.
Que, Jr., J. Am. Chem. Soc. 2005, 127, 6548; b) A. Bassan, M. R. A.
Acknowledgements
Financial support from MCYT of Spain through project CTQ2006–05367/
BQU to M.C., and from the US Department of Energy (DE-FG02–
03ER15455) to L.Q. is gratefully acknowledged. A.C. and M.G. thank
MEC for PhD grants. The authors also thank Rahucat for a gift of 1,4,7-
tri(p-toluensulfonyl)-1,4,7-triazacyclononane.
Keywords: bioinorganic chemistry
nonheme oxygenases · oxidation · reaction mechanisms
· enzyme catalysis ·
[11] A. Bassan, M. R. A. Blomberg, P. E. M. Siegbahn, L. Que, Jr.,
Seo, T. Kamachi, T. Kouno, K. Murata, M. J. Park, K. Yoshizawa, W.
[13] Note that if peroxide binding and/or O–O breakage in species PA
and PB were identical, all epoxides would be 50% water-labeled.
[14] DFT geometries were optimized at the B3LYP level in junction of
the LANL2DZ basis set with associated ECP for Fe as implemented
in the Gaussian 03 program. The energies were further refined by
single-point calculations using the SDD basis set with associated
[2] a) P. R. Ortiz de Montellano, Cytochrome P450: Structure, Mecha-
nism and Biochemistry, 3rd ed., Kluwer Academic, New York, 2005;
[3] a) J. C. Price, E. W. Barr, T. E. Glass, C. J. Krebs, J. M. Bollinger, Jr.,
R. B. Guyer, J. H. Brehm, E. W. Barr, J. M. Bollinger, Jr., C. Krebs,
ECP for Fe and 6-311G
free energies given in this work include energies computed at the
B3LYP/6-311G(d,p)&SDD//B3LYP/LANL2DZ level of theory to-
ACHTUNGTRENN(UNG d,p) basis sets on the other atoms. Final
AHCTUNGTRENNUNG
gether with zero-point energies, thermal corrections and entropy cal-
culated at the B3LYP/LANL2DZ level.
´
129, 6168; d) C. Krebs, D. Galonic Fujimori, C. T. Walsh, J. M. Bol-
[15] Analogous differences in energy between tautomeric ferric-hydro-
peroxide species have been described for [FeACHTUNGERTN(NNUG TPA)ACHTUNRTGENNG(UN OOH)ACHTUNGTRENNUNG :
(H2O]2+
´
linger, Jr., Acc. Chem. Res. 2007, 40; 484; e) D. P. Galonic, E. W.
Barr, C. T. Walsh, J. M. Bollinger, Jr., C. Krebs, Nat. Chem. Biol.
2007, 3, 113; f) M. D. Wolfe, D. J. Altier, A. Stubna, C. V. Popescu,
A. Bassan, M. R. A. Blomberg, P. E. M. Siegbahn, L. Que, Jr., J.
[16] Note added in proof (23.1.2009): When this paper was at the proof
stage, Nam and co-workers suggested that a nonheme iron(V) oxo
species exchanges its oxygen with H218O much faster than the cor-
responding iron(IV) oxo species.J. Yoon, S. A. Wilson, Y. K. Jang,
M. S. Seo, K. Nehru, B. Hedman, K. O. Hodgson, E. Bill, E. I. Solo-
[4] a) J.-U Rohde, J.-H In, M.-H. Lim, W. W. Brennessel, M. R. Bukow-
1037; b) E. J. Klinker, J. Kaizer, W. W. Brennessel, N. L. Woodrum,
U. Rohde, W. J. Song, A. Stubna, J. Kim, E. Munck, W. Nam, L.
Received: December 10, 2008
Published online: February 19, 2009
3362
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2009, 15, 3359 – 3362