A R T I C L E S
Reggelin et al.
Figure 1. â-Turn structure and definitions of the torsional angles æ and ψ (left). Topographical abstraction and definition of â as the angle between the
planes spanned by the atoms connected in blue with those connected in red (right).
Scheme 1. General Outline of the Method; Sij Denotes the Chiral
of them display high levels of biological activity. Despite these
Sulfonimidoyl Unit as Specified in Chart 3
successes, the structural transition from a bioactive peptide to
a nonpeptidic compound is still a very tedious process, involving
the identification of the crucial amino acid side chains, the
establishment of their spatial relationship, and finally the
selection of an organic template suitable for reproducing the
geometry of the pharmacophoric model.
To solve the latter problem a structural variable connecting
the peptide with the “non-peptide world” would improve the
situation considerably. If one assumes, and there is much
evidence for the validity of this assumption,14-16 that â-turns
play a dominant role in the molecular recognition process, one
relationship between these two conformational subunits. This
such variable has been proposed by Ball in 1993.17 Contrasting
way â is a measure of the relative orientation of the exposed
the common description of â-turn topography based on the
side chains at positions 2 and 3 (RR2 and RR3) which are
backbone angles æ and ψ, he proposed a pseudo-dihedral â as
suspected to be of major importance in the ligand/receptor
a means to describe and to compare the spatial relationship of
interaction. With these ideas in mind it seems promising to
potentially pharmacophoric groups in both peptides and non-
develop a new synthesis of highly functionalized nitrogen
peptides (Figure 1).
heterocycles giving access to a broad range of compounds
The basis for this approach is the observation that the
displaying pharmacophoric groups under a wide range of â. This
conformational relationship between bonds 1 and 2 and atom
entails the necessity to find a synthetic protocol flexible enough
RC3 (as well as bonds 3/4 and RC2) remains approximately
to generate mono- and polycyclic systems with varying side
constant for any turn containing trans peptide bonds. The
chains and maximum control of both the relative and absolute
pseudo-dihedral â [TORS (C1, R2, R3, N4) thus describes the
configuration at the stereogenic centers. In this article we would
like to describe our efforts toward this goal.
(4) Snider, R. M.; Constantine, J. W.; Lowe, J. A., III; Longo, K. P.; Lebel,
W. S.; Woody, H. A.; Drozda, S. E.; Desai, M. C.; Vinick, F. J.; Spencer,
R. W.; Hess, H.-J. Science 1991, 251, 435.
(5) McLean, S.; Ganong, A. H.; Seeger, T. F.; Bryce, D. K.; Pratt, K. G.;
Reynolds, L. S.; Siok, C. J.; Lowe, J. A., III; Heym, J. Science 1991, 251,
437.
(6) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.;
Bacheler, L. T.; Meek, O. M. J.; Rayner, M. M. Science 1994, 263, 380.
(7) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino, J.; Leahy, E. M.;
Sprengeler, P. A.; Furst, G.; Smith, A. B., III; Strader, C. D.; Cascieri, M.
A.; Candelore, M. R.; Donaldson, C.; Vale, W.; Maechler, L. J. Am. Chem.
Soc. 1992, 114, 9217.
(8) Guller, R.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Hirth, G.; Jenny,
C.; Kansy, M.; Montavon, F.; Muller, M.; Oefner, C.; Stadler, H.; Vieira,
E.; Wilhelm, M.; Wostl, W.; Marki, H. P. Bioorg. Med. Chem. Lett. 1999,
9, 1403.
(9) Vieira, E.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Guller, R.; Hirth,
G.; Marki, H. P.; Muller, M.; Oefner, C.; Scalone, M.; Stadler, H.; Wilhelm,
M.; Wostl, W. Bioorg. Med. Chem. Lett. 1999, 9, 1397.
(10) Oefner, C.; Binggeli, A.; Breu, V.; Bur, D.; Clozel, J. P.; D’Arcy, A.; Dorn,
A.; Fischli, W.; Gruninger, F.; Guller, R.; Hirth, G.; Marki, H. P.; Mathews,
S.; Muller, M.; Ridley, R. G.; Stadler, H.; Vieira, E.; Wilhelm, M.; Winkler,
F. K.; Wostl, W. Chem. Biol. 1999, 6, 127.
General Outline of the Method
In 1994 we discovered that titanated open-chain 2-alkenyl
sulfoximines 3, derived from cyclic sulfonimidates 1, are highly
stereoselective allyl transfer reagents (Scheme 1).18 Shortly after
that, Gais et al. introduced N-methyl substituted 2-alkenyl
sulfoximines which he elaborated into useful synthetic tools for
asymmetric synthesis.19
In the time to follow we developed this chemistry further by
the introduction of cyclic 2-alkenyl sulfoximines 2 and the
exploitation of the electron-deficient double bond in the primary
products 5 of the allyl transfer reaction.20-23
(18) Reggelin, M.; Weinberger, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 444.
(19) For excellent related work on allylic sulfoximines see: (a) Gais, H. J.;
Bruns, P. R.; Raabe, G.; Hainz, R.; Schleusner, M.; Runsink, J.; Babu, G.
S. J. Am. Chem. Soc. 2005, 127, 6617. (b) Gais, H.-J.; Babu, G. S.; Guenter,
M.; Das, P. Eur. J. Org. Chem. 2004, 1464. Gais, H.-J.; Hainz, R.; Muller,
H.; Bruns, P. R.; Giesen, N.; Raabe, G.; Runsink, J.; Nienstedt, S.; Decker,
J.; Schleusner, M.; Hachtel, J.; Loo, R.; Woo, C.-W.; Das, P. Eur. J. Org.
Chem. 2000, 3973. Gais, H.-J.; Mueller, H.; Decker, J.; Hainz, R.
Tetrahedron Lett. 1995, 36, 7433.
(11) Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541.
(12) Fletcher, M. D.; Campbell, M. M. Chem. ReV. 1998, 98, 763.
(13) Muller, G.; Hessler, G.; Decornez, H. Y. Angew. Chem., Int. Ed. 2000, 39,
894.
(14) Hruby, V. J. Life Sci. 1982, 31, 189.
(15) Richardson, J. S. AdV. Protein Chem. 1981, 34, 167.
(16) Rose, G. D.; Gierasch, L. M.; Smith, J. A. AdV. Protein Chem. 1985, 37,
1.
(17) Ball, J. B.; Hughes, R. A.; Alewood, P. F.; Andrews, P. R. Tetrahedron
1993, 49, 3467.
(20) Reggelin, M.; Gerlach, M.; Vogt, M. Eur. J. Org. Chem. 1999, 1011.
(21) Reggelin, M.; Heinrich, T. Angew. Chem., Int. Ed. 1998, 37, 2883.
9
4024 J. AM. CHEM. SOC. VOL. 128, NO. 12, 2006