10.1002/anie.202006278
Angewandte Chemie International Edition
RESEARCH ARTICLE
Based on these mechanistic studies, a general mechanism is
proposed to elucidate the stereoselectivity control in the alkyne
hydrofluorination (Scheme 4D). The rate-determining syn-
protonation of alkyne (k1) leads to an ion pair intermediate (I),
which then undergoes fluorination (k2) to afford the kinetically
favored E-vinyl fluoride. The thermodynamically more stable Z-
product is formed from the isomerization of the E-vinyl fluoride,
which takes place via BF3-mediated fluoride dissociation (k-2)
and isomerization of the ion pair intermediate (k3) followed by
Keywords: vinyl fluoride • fluorinating reagent • pharmaceutical
derivatization • vinyl cation • DFT study
[1] (a) G. Haufe, F. R. Leroux, Fluorine in Life Sciences: Pharmaceuticals,
Medicinal Diagnostics, and Agrochemicals; Elsevier: London, 2019. (b)
J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432–2506. (c) S. Purser, P. R. Moore, S. Swallow, V.
Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330. (d) K. Müller, C.
Faeh, F. Diederich, Science 2007, 317, 1881−1886. (e) J. P. Bégué, D.
Bonnet-Delpon, J. Fluorine Chem. 2006, 127, 992–1012. (f) C. Isanbor,
D. O’Hagan, J. Fluorine Chem. 2006, 127, 303–319.
–
Z-selective fluorination with BF4 (k4). The experimental and
computational mechanistic studies revealed several factors that
control the rate of the E-to-Z isomerization and thus the E/Z-
selectivity. Higher temperatures and polar solvents (e.g. DCE)
promote the BF3-mediated fluoride dissociation (k-2) to form the
ion pair intermediate (I). Experimentally, excess BF4− (condition
A) was also found to favor the formation of the Z-isomer (see
SI), an effect that may be ascribed to the increased availability
[2] Overviews of vinyl fluorides in medicinal chemistry: (a) N. A. Meanwell,
J. Med. Chem. 2018, 61, 5822−5880. (b) J.-P. Bégué, D. Bonnet-
Delpon, Bioorganic and Medicinal Chemistry of Fluorine. p.18, John
Wiley & Sons, Inc., Hoboken, New Jersey, 2008. Applications of vinyl
fluorides in medicinal chemistry: (c) E. M. Milczek, D. Bonivento, C.
Binda, A. Mattevi, I. A. McDonald, D. E. Edmondson, J. Med. Chem.
2008, 51, 8019-8026. (d) S. D. Edmondson, L. Wei, J. Xu, J. Shang, S.
Xu, J. Pang, A. Chaudhary, D. C. Dean, H. He, B. Leiting, K. A. Lyons,
R. A. Patel, S. B. Patel, G. Scapin, J. K. Wu, M. G. Beconi, N. A.
Thornberry, A. E. Weber, Bioorg. Med. Chem. Lett. 2008, 18, 2409–
2413. (e) G. Dutheuil, S. Couve-Bonnaire, X. Pannecoucke, Angew.
Chem. Int. Ed. 2007, 46, 1290–1292; Angew. Chem. 2007, 119, 1312–
1314.
−
of BF4 for anti-attack (k4) or a change in the solvent polarity
due to higher ionic content. In addition, our DFT calculations
suggested that sterically less hindered alkyne substituents (e.g.
R = methyl) lead to lower barriers to the Z-selective fluorination
(k4) due to diminished steric repulsions with BF4 in the
fluorination transition state. On the other hand, lower
–
[3] (a) S. Caron, Org. Process Res. Dev. 2020, 24, 470–480. (b) S. Liang,
G. B. Hammond, B. Xu, Functionalization of Alkynes for Preparing
Alkenyl Fluorides. In: Hu, J.; Umemoto, T. (eds) Fluorination. Synthetic
Organofluorine Chemistry. Springer: Singapore, 2018. (c) P. A.
Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin,
Chem. Rev. 2015, 115, 9073−9174. (d) T. Besset, T. Poisson, X.
Pannecoucke, Eur. J. Org. Chem. 2015, 2765–2789. (e) G. Landelle, M.
Bergeron, M. O. Turcotte-Savard, J. F. Paquin, Chem. Soc. Rev. 2011,
40, 2867−2908. (f) H. Yanai, T. Taguchi, Eur. J. Org. Chem. 2011,
5939−5954. (g) M. J. Koh, T. T. Nguyen, H. Zhang, R. R. Schrock, A. H.
Hoveyda, Nature 2016, 531, 459–465. (h) J. H. Steenis, A. Gen, J.
Chem. Soc., Perkin Trans. 1, 2002, 19, 2117–2133. (i) B. Zajc, R.
Kumar, Synthesis 2010, 11, 1822–1836. (j) S. Hara, Stereoselective
Synthesis of Mono-fluoroalkenes. In: Wang J. (eds) Stereoselective
Alkene Synthesis. Topics in Current Chemistry, vol 327, 59. Springer,
Berlin, Heidelberg, 2012. (k) E. Pfund, T. Lequeux, D. Gueyrard,
Synthesis 2015, 47, 1534–1546. (l) M. Drouin, J.-D. Hamel, J.-F.
Paquin, Synthesis 2018, 50, 881–955.
temperatures
(e.g.
in
the
HBF4•Et2O
mediated
hydrofluorination), less polar solvents, and bulkier alkyne
substituents (e.g. R = aryl) that suppress the ion pair
isomerization (k3) and the Z-selective fluorination (k4) would
lead to higher E-selectivity under kinetic control.
Conclusion
We have developed a simple, practical, and metal-free strategy
for the regio- and stereoselective controlled mono- and
dihydrofluorination
of
alkynes
by
employing
2,6-
dichloropyridinium tetrafluoroborate as a new, safe, and stable
fluorinating reagent. Mechanistic and DFT studies reveal that
the stereoselectivity of hydrofluorination results from either
kinetic or thermodynamic control in a stepwise protonation-
fluorination pathway. We anticipate that this hydrofluorination
protocol will find wide applications in drug discovery and related
fields by facilitating the preparation of fluorinated molecules of
biological interest. Studies further exploiting the synthetic
applications of vinyl cation intermediates generated under
similar mild conditions are ongoing.
[4] Y. Ye, T. Takada, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55,
15559–15563; Angew. Chem. 2016, 128, 15788–15792.
[5] (a) S. H. Lee, J. Schwartz, J. Am. Chem. Soc. 1986, 108, 2445–2447.
(b) N. A. Petasis, A. K. Yudin, I. A. Zavialov, G. K. S. Prakash, G. A.
Olah, Synlett 1997, 5, 606–608. (c) B. Greedy, V. Gouverneur,
Chem.Commun. 2001, 233–234. (d) D. P. Matthews, S. C. Miller, E. T.
Jarvi, J. S. Sabol, J. R. McCarthy, Tetrahedron Lett. 1993, 34, 3057–
3060. (e) M. A. Tius, J. K. Kawakami, Synth. Commun. 1992, 22,
1461–1471. (f) M. A. Tius, J. K. Kawakami, Synlett 1993, 3, 207–208.
(g) M. A. Tius, J. K. Kawakami, Tetrahedron 1995, 51, 3997–4010. (h)
T. Furuya, T. Ritter, Org. Lett. 2009, 11, 2860–2863. (i) H. Sommer, A.
Fürstner, Chem. Eur. J. 2017, 23, 558 –562. (j) K. J. Makaravage, A. F.
Brooks, A. V. Mossine, M. S. Sanford, P. J. H. Scott, Org. Lett. 2016,
18, 5440−5443.
Acknowledgements
We thank the University of Pittsburgh and the NIH
(R35GM128779) for financial support for this work. DFT
calculations were performed at the Center for Research
Computing at the University of Pittsburgh and the Extreme
Science and Engineering Discovery Environment (XSEDE)
supported by the National Science Foundation grant number
[6] G. A. Jr. Boswell, U. S. Patent 4 212 815, 1980.
[7] J. A. Akana, K. X. Bhattacharyya, P. Muller, J. P. Sadighi, J. Am. Chem.
Soc. 2007, 129, 7736−7737.
[8] B. C. Gorske, C. T. Mbofana, S. J. Miller, Org. Lett. 2009, 11,
4318−4321.
ACI-1548562.
We would like to thank Professors Paul
[9] O. E. Okoromoba, J. Han, G. B. Hammond, B. Xu, J. Am. Chem. Soc.
2014, 136, 14381−14384.
Floreancig (Pitt) and Dean Toste (UC Berkeley) for comments
and discussions.
[10] (a) F. Nahra, S. R. Patrick, D. Bello, M. Brill, A. Obled, D. B. Cordes, A.
M. Slawin, D. O’Hagan, S. P. Nolan, ChemCatChem 2015, 7, 240−244.
10
This article is protected by copyright. All rights reserved.