5654
S. Harada et al. / Tetrahedron Letters 50 (2009) 5652–5655
reaction of dienophiles with branched alkyl chains 3h and 3i, and
aromatic 3j, for which the Yb(III)/BINAMIDE 1a system was not
effective (yield 29–88%; 56–87% ee), was dramatically optimized
(entries 8–10). Every reaction took place efficiently in good to
excellent yields (84%-quantitative yield) with a high level of
enantioselectivity (97–98% ee). Concentrated reaction conditions
shortened the reaction time without a loss of selectivity. Substrates
with methoxy- (3k) and phenoxycarbonyl (3l) groups could also be
used in this catalyst system, although the ees were slightly de-
creased (entries 11 and 12). In the case of acryloyl-type dienophile
3m, the desired adduct was obtained in only 20% yield because the
dimerization and oligomerization of 3m were the predominant
reactions. The reaction with chlorine-substituted dienophile 3n
also suffered from side reactions, and the reaction mixture turned
black as the reaction proceeded.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Re-
search on Priority Areas ‘Advanced Molecular Transformations of
Carbon Resources’ and a Grant-in-Aid for Young Scientists (B) from
JSPS and the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.
References and notes
1. For recent reviews, see: (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299; (b)
Connon, S. J. Chem. Eur. J. 2006, 12, 5418; (c) Connon, S. J. Chem. Commun. 2008,
2499.
2. For recent reviews, see: (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289; (b)
Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520; (c) Akiyama,
T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999; (d) Doyle, A. G.;
Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
3. For recent reviews, see: Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.
4. (a) Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40, 3633; For
recent reviews, see: (b) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed.
2008, 47, 1560.
These reaction products can be readily converted into stereose-
lectively substituted cyclohexenes or cyclohexenones in high
yields according to methods established by our group.10
In summary, we have developed axially chiral BINUREA 10 as a
new bis-urea ligand, which can be synthesized in a single opera-
tion from commercially available compounds. Yb(OTf)3/BINUREA
complex catalyzed the asymmetric Diels–Alder reactions of Dani-
shefsky-type diene and electron-deficient olefins to give highly
substituted cyclohexenes in optically active form. With BINUREA
and BINAMIDE in hand, the Diels–Alder reaction can be applicable
to a wide range of substrates. Further studies on this new catalyst
system of BINUREA with other metals, and its application to differ-
ent types of reactions, are now underway.
5. DMPU is
a representative example. This cyclic urea is often used as an
alternative to carcinogenic HMPA. Mukhopadhyay, T.; Seebach, D. Helv. Chim.
Acta 1982, 65, 385.
6. (a) Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 221; (b) Yang,
D.; Chen, Y.-C.; Zhu, N.-Y. Org. Lett. 2004, 6, 1577; (c) Tang, Y.; Deng, L.; Zhang,
Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 593; (d) Tang, Y.; Zhang, Y.; Dai,
M.; Luo, T.; Deng, L.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 885; (e) Tang, Y.; Deng,
L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 1657; (f) Chen, W.; Li,
R.; Han, B.; Li, B.-J.; Chen, Y.-C.; Wu, Y.; Ding, L.-S.; Yang, D. Eur. J. Org. Chem.
2006, 1177; (g) Yang, M.; Yip, K.-T.; Pan, J.-H.; Chen, Y.-C.; Zhu, N.-Y.; Yang, D.
Synlett 2006, 18, 3057; (h) Chen, W.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C.
Synthesis 2006, 18, 3058; (i) Bonizzoni, M.; Fabbrizzi, L.; Taglietti, A.; Tiengo, F.
Eur. J. Org. Chem. 2006, 3567; (j) Pan, J.-H.; Yang, M.; Gao, Q.; Zhu, N.-Y.; Yang,
D. Synthesis 2007, 16, 2539; (k) Cui, X.; Zhou, Y.; Wang, N.; Liu, L.; Guo, Q.-X.
Tetrahedron Lett. 2007, 48, 163.
2. Experimental
7. Metal/urea complexes have been extensively investigated. For selected
examples, see: (a) Theophanides, T.; Harvey, P. D. Coord. Chem. Rev. 1987, 76,
237; (b) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54; (c) Knight, L. K.; Freixa, Z.;
van Leeuwen, P. W. N. M.; Reek, J. N. H. Organometallics 2006, 25, 954; (d) Lucas,
R. L.; Zart, M. K.; Murkerjee, J.; Sorrell, T. N.; Powell, D. R.; Borovik, A. S. J. Am.
Chem. Soc. 2006, 128, 15476; (e) Tzeng, B.-C.; Huang, Y.-C.; Chen, B.-S.; Wu, W.-
M.; Lee, S.-Y.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 2007, 46, 186; (f) Harnung, S.
E.; Larsen, E. Inorg. Chem. 2007, 46, 5166; (g) Yoo, H.; Mirkin, C. A.; DiPasquale,
A. G.; Rheingold, A. L.; Stern, C. L. Inorg. Chem. 2008, 47, 9727; (h) Shook, R. L.;
Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. J. Am.
Chem. Soc. 2008, 130, 8888.
8. (a) Gamez, P.; Dunjic, B.; Fache, F.; Lemaire, M. J. Chem. Soc., Chem. Commun.
1994, 1417; (b) Kanai, M.; Tomioka, K. Tetrahedron Lett. 1995, 36, 4275; (c)
Gamez, P.; Dunjic, B.; Lemaire, M. J. Org. Chem. 1996, 61, 5196; (d) Touchard, F.;
Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron Lett. 1997, 38, 2275; (e) Touchard,
F.; Bernard, M.; Fache, F.; Delbecq, F.; Guiral, V.; Sautet, P.; Lemaire, M. J.
Organomet. Chem. 1998, 567, 133; (f) Touchard, F.; Bernard, M.; Fache, F.;
Lemaire, M. J. Mol. Catal., A: Chem. 1999, 140, 1; (g) Bied, C.; Moreau, J. J. E.; Man,
M. W. C. Tetrahedron: Asymmetry 2001, 12, 329; (h) Doyle, M. P.; Morgan, J. P.;
Fettinger, J. C.; Zavalij, P. Y.; Colyer, J. T.; Timmons, D. J.; Carducci, M. D. J. Org.
Chem. 2005, 70, 5291; For the use of a catalytic urea ligand and a stoichiometric
amount of metal, see: (i) Hernández-Rodríguez, M.; Gabriela Avila-Ortiz, C.; del
Campo, J. M.; Hernández-Romero, D.; Rosales-Hoz, M. J.; Juaristi, E. Aust. J.
Chem. 2008, 61, 364; (j) Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon,
D. J. J. Am. Chem. Soc. 2009, 131, 9140.
2.1. General procedure for the Diels–Alder reaction of Yb(III)/
BINUREA complex (2a and 3a to 5a via 4a)
Yb(OTf)3 (18.6 mg, 30.0
lmol) and BINUREA (R)-10a (17.4 mg,
30.0 mol) taken in a test tube with a stirring bar were heated at
l
120 °C under reduced pressure (<0.1 mmHg) for 30 min. After
being allowed to cool to room temperature, the test tube was
charged with dry argon. Dichloromethane (CH2Cl2) (1.0 mL) and
DBU (9.0 lL, 60.0 lmol) were added successively, and the resulting
solution was stirred for 2 h at room temperature. The reaction ves-
sel was cooled to 0 °C and a solution of dienophile 3a (46.6 mg,
0.30 mmol) in CH2Cl2 (0.50 mL) was added, followed by the addi-
tion of diene 2a (150 lL, 0.60 mmol). The mixture was stirred for
3 h at the same temperature, and water (5.0 mL) was then added.
Insoluble materials were filtered through a pad of CeliteÒ. The
water layer was extracted three times with CH2Cl2, and the com-
bined organic layers were washed with brine and dried over
Na2SO4. After the volatile materials were removed under reduced
pressure, diastereoselectivity was checked by 1H NMR (a single
diastereomer). The crude product could be purified by column
chromatography (SiO2, hexane/AcOEt = 5/1) to give 4a as a color-
less oil, which was solidified upon standing.
The resulting crude mixture 4a was dissolved in CH2Cl2
(3.0 mL), and TFA (0.3 mL) was added at 0 °C. After being stirred
for 10 min at room temperature, the reaction was quenched by
the addition of aqueous saturated NaHCO3. The mixture was ex-
tracted three times with CH2Cl2, and the combined organic layers
were washed with brine and dried over Na2SO4. After the volatile
materials were removed under reduced pressure, the resulting res-
idue was purified by column chromatography (SiO2, hexane/
AcOEt = 1/1) to give 5a (66.5 mg, yield 99%) as a colorless solid.
The enantiomeric excess was determined to be 98% ee by HPLC
analysis (Daicel Chiralcel OJ-H, hexane/iPrOH = 65/35, f: 1.0 mL/
min, 254 nm, 23.9 min (minor), 29.8 min (major)).
9. Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807.
10. Sudo, Y.; Shirasaki, D.; Harada, S.; Nishida, A. J. Am. Chem. Soc. 2008, 130, 12588.
11. For examples of asymmetric Diels–Alder reactions using ketone-derived siloxy
dienes, see: (a) Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122,
7843; (b) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5846; (c) Usuda, H.; Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett.
2004, 6, 4387; (d) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626;
(e) Liu, D.; Canales, E.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 1498; (f) Ward, D. E.;
Shen, J. Org. Lett. 2007, 9, 2843; See also: (g) Yamatsugu, K.; Yin, L.; Kamijo, S.;
Kimura, Y.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2009, 48, 1070.
12. Asymmetric hetero-Diels–Alder reactions are well known. (a) Jørgensen, K. A.
Angew. Chem., Int. Ed. 2000, 39, 3558; For aldehydes and ketones, see a review:
(b) Pellissier, H. Tetrahedron 2009, 65, 2839; For imines, see reviews: (c)
Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099; (d) Rowland, G. B.;
Rowland, E. B.; Zhang, Q.; Antilla, J. C. Curr. Org. Chem. 2006, 10, 981.
13. (a) Inokuchi, T.; Okano, M.; Miyamoto, T.; Madon, H. B.; Takagi, M. Synlett 2000,
1549; (b) Inokuchi, T.; Okano, M.; Miyamoto, T. J. Org. Chem. 2001, 66, 8059.
14. Nishida, A.; Yamanaka, M.; Nakagawa, M. Tetrahedron Lett. 1999, 40, 1555. See
also Ref. 10. By the addition of tertiary amine, DA adducts can be isolated as 4,
and the excess diene remained unchanged during the reaction as well. Without
amines, DA adducts were directly converted to 5.