Chemistry & Biology
Small-Molecule Inhibition of Glucose Transport
ACKNOWLEDGMENTS
Haber, R.S., Rathan, A., Weiser, K.R., Pritsker, A., Itzkowitz, S.H., Bodian, C.,
Slater, G., Weiss, A., and Burstein, D.E. (1998). GLUT1 glucose transporter
expression in colorectal carcinomas: a marker for poor prognosis. Cancer
83, 34–40.
This work was funded by NIH P50 GM086145 and the Chicago Biomedical
Consortium with support from the Searle Funds at the Chicago Community
Trust. We thank Gregory Driessens for assistance with glucose uptake exper-
iments, and Jamie Cabrera-Pardo for preparation of compounds 11 and 12 on
preparative scale. We also thank Paul Schumacker and Theodore Steck for
helpful discussions.
Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W., and Friend, S.H.
(1997). Integrating genetic approaches into the discovery of anticancer drugs.
Science 278, 1064–1068.
Hatanaka, M. (1974). Transport of sugars in tumor cell membranes. Biochim.
Biophys. Acta 355, 77–104.
Received: August 27, 2010
Revised: November 26, 2010
Accepted: December 1, 2010
Published: February 24, 2011
Helgerson, A.L., Hebert, D.N., Naderi, S., and Carruthers, A. (1989).
Characterization of two independent modes of action of ATP on human eryth-
rocyte sugar transport. Biochemistry 28, 6410–6417.
Lee, H., Suzuki, M., Cui, J., and Kozmin, S.A. (2010). Synthesis of an Azide-
Tagged Library of 2,3-dihydro-4-quinolones. J. Org. Chem. 75, 1756–1759.
REFERENCES
Lehar, J., Stockwell, B.R., Giaever, G., and Nislow, C. (2008). Combination
Bonder, E.M., and Mooseker, M.S. (1986). Cytochalasin B slows but does not
prevent monomer addition at the barbed end of the actin filament. J. Cell Biol.
102, 282–288.
chemical genetics. Nat. Chem. Biol. 4, 674–681.
Liu, H., Hu, Y.P., Savarai, N., Priebe, W., and Lampadis, T. (2001).
Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40,
5542–5547.
Bredel, M., and Jacoby, E. (2004). Chemogenomics: An emerging strategy for
rapid target and drug discovery. Nat. Rev. Genet. 5, 262–275.
Manolescu, A.R., Witkowska, K., Kinnaird, A., Cessford, T., and Cheeseman,
C. (2007). Facilitated hexose transporters: new perspectives on form and func-
tion. Physiology (Bethesda) 22, 234–240.
Brown, J. (1962). Effects of 2-deoxyglucose on carbohydrate metabolism:
review of the literature and studies in the rat. Metabolism 11, 1098–1112.
Brown, R.S., and Wahl, R.L. (1993). Overexpression of GLUT-1 glucose trans-
porter in human breast cancer. An immunohistochemical study. Cancer 72,
2979–2985.
Nishioka, T., Oda, Y., Seino, Y., Yamamoto, T., Inagaki, N., Yano, H., Imura, H.,
Shigemoto, R., and Kikuchi, H. (1992). Distribution of glucose transporters in
human brain tumors. Cancer Res. 52, 3972–3979.
Cantuaria, G., Fagotti, A., Ferrandina, G., Magalhaes, A., Nadji, M., Angioli, R.,
Penalver, M., Mancuso, S., and Scambia, G. (2001). GLUT-1 expression in
ovarian carcinoma: association with survival and response to chemotherapy.
Cancer 92, 1144–1150.
Ohnishi, T., and Trumpower, B.L. (1980). Differential effects of antimycin on
ubisemiquinone bound in different environments in isolated succinate-
cytochrome c reductase complex. J. Biol. Chem. 255, 3278–3284.
Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H.,
and Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neu-
ritogenesis of neuroblastoma cells. J. Antibiot. 44, 113–116.
Carruthers, A., DeZutter, J., Gaunguly, A., and Devaskar, S.U. (2009). Will the
original glucose transporter isotype stand up!. Am. J. Physiol. Endocrinol.
Metab. 297, E836–E848.
Pelicano, H., Martin, D.S., Xu, R., and Huang, P. (2006). Glycolysis inhibition for
Cave´ , C., Gassama, A., Mahuteau, J., d’Angelo, J., and Riche, C. (1997).
Condensation of chiral imines and chiral b-enaminoesters with maleic and cit-
raconic anhydrides. Tetrahedron Lett. 38, 4773–4776.
anticancer treatment. Oncogene 25, 4633–4646.
Racker, E. (1974). History of the Pasteur effect and its pathobiology. Mol. Cell.
Biochem. 5, 17–23.
Cui, J., Matsumoto, K., Wang, C.Y., Peter, M.E., and Kozmin, S.A. (2010).
Synthesis of high-purity chemical library reveals a potent inducer of oxidative
stress. ChemBioChem 11, 1224–1227.
Rudlowski, C., Becker, A.J., Schroder, W., Rath, W., Buttner, R., and Moser,
M. (2003). GLUT1 messenger RNA and protein induction relates to the malig-
nant transformation of cervical cancer. Am. J. Clin. Pathol. 120, 691–698.
DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008).
The biology of cancer: metabolic reprogramming fuels cell growth and prolif-
eration. Cell Metab. 7, 11–20.
Sabri, M.I., and Ochs, S. (1971). Inhibition of glyceraldehydes-3-phoshate
dehydrogenase in mammalian nerve by iodoacetic acid. J. Neurochem. 18,
1509–1514.
Deves, R., and Krupka, R.M. (1978). Cytochalasin B and the kinetics of inhibi-
tion of biological transport. A case of asymmetric binding to the glucose
carrier. Biochim. Biophys. Acta 510, 339–348.
`
Segre, D., Deluna, A., Church, G.M., and Kishony, R. (2005). Modular epistasis
in yeast metabolism. Nat. Genet. 37, 77–83.
Stockwell, B.R. (2000). Chemical genetics: ligand-based discovery of gene
Eichner, L.J., Perry, M.C., Dufour, C.R., Bertos, N., Park, M., St-Pierre, J., and
Giguere, V. (2010). miR-378* mediates metabolic shiftin breast cancer cells via
the PGC-1b/ERRg transcriptional pathway. Cell Metab. 12, 352–361.
function. Nat. Rev. Genet. 1, 116–125.
Tan, D.S. (2005). Diversity-oriented synthesis: exploring the intersections
between chemistry and biology. Nat. Chem. Biol. 1, 74–84.
Evans, A., Bates, V., Troy, H., Hewitt, S., Holbeck, S., Chung, Y., Phillips, R.,
Stubbs, M., Griffiths, J., and Airley, R. (2008). GLUT-1 as a therapeutic target:
increased chemoresistance and HIF-1-independent link with cell turnover is
revealed through COMPARE analysis and metabolomic studies. Cancer
Chemother. Pharmacol. 61, 377–393.
Tennant, D.A., Dura´ n, R.V., and Gottlieb, E. (2010). Targeting metabolic trans-
formation for cancer therapy. Nat. Rev. Cancer 10, 267–277.
´
Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N.,
Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001).
Systematic genetic analysis with ordered arrays of yeast deletion mutants.
Science 294, 2364–2368.
Faik, P., Morgan, M., Naftalin, R.J., and Rist, R.J. (1989). Transport and accu-
mulation of 2-deoxy-D-glucose in wild-type and hexokinase-deficient cultured
Chinese-hamster ovary (CHO) cells. Biochem. J. 260, 153–155.
Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz,
G.F., Brost, R.L., Chang, M., et al. (2004). Global mapping of the yeast genetic
interaction network. Science 303, 808–813.
Gambhir, S.S. (2004). Molecular imaging of cancer with positron emission
tomography. Nat. Rev. Cancer 4, 891–899.
Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic
Ulanovskaya, O., Janjic, J., Matsumoto, K., Schumacker, P.T., Kron, S.J., and
Kozmin, S.A. (2008). Synthesis enables identification of the cellular target of
leucascandrolide A and neopeltolide. Nat. Chem. Biol. 4, 418–424.
glycolysis? Nat. Rev. Cancer 4, 891–899.
Gohil, V.M., Sheth, S.A., Nilsson, R., Wojtovich, A.P., Lee, J.H., Perocchi, F.,
Chen, W., Clish, C.B., Ayata, C., Brookes, P.S., et al. (2010). Nutrient-sensi-
tized screening for drugs that shift energy metabolism from mitochondrial
respiration to glycolysis. Nat. Biotechnol. 28, 249–255.
Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009).
Understanding the Warburg effect: the metabolic requirements of cell prolifer-
ation. Science 324, 1029–1033.
Chemistry & Biology 18, 222–230, February 25, 2011 ª2011 Elsevier Ltd All rights reserved 229