Journal of the American Chemical Society
Page 4 of 5
Armstrong, P.; Grigg, R.; Heanep, F.; Surendrakumarb, S.; Warnock,
W. J. Tetrahedron 1991, 47, 4495ꢀ4518. (e) Nakama, K.; Sekia, S.;
Kanemasa, S. Tetrahedron Lett. 2002, 43, 829ꢀ832.
enantioselective nitrone formation process. Further developments
of the conceptually novel reactivity mode are expected to
significantly expedite chiral nitrone synthesis.
1
2
3
4
5
6
7
8
9
13. (a) Mo, D.ꢀL.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 14,
5180ꢀ5183. (b) Nakamura, I.; Okamoto, M.; Sato, Y.; Terada, M.
Angew. Chem. Int. Ed. 2012, 51, 10816ꢀ10819. (c) Chavannavar, A.
P.; Oliver, A. G.; Ashfeld, B. L. Chem. Commun. 2014, 50,
10853ꢀ10856. (d) Peng, X. X.; Deng, Y. J.; Yang, X. L.; Zhang, L.;
Yu, W.; Han, B. Org. Lett. 2014, 16, 4650ꢀ4653. (e) Fraboni, A. J.;
BrennerꢀMoyer, S. E. Org. Lett. 2016, 18, 2146ꢀ2149. (f) Shi, W.ꢀM.;
Ma, X.ꢀP.; Su, G.ꢀF.; Mo, D.ꢀL. Org. Chem. Front. 2016, 3, 116ꢀ130.
14. Schleiss, J.; Rollin, P.; Tatibouet, A. Angew. Chem. Int. Ed. 2010, 49,
577ꢀ580.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures, analytical and spectral data (PDF)
Crystal data for 3n, 3x’ and 4f (CIF)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15. For selected recent examples of preparation of chiral nitrones for
application in natural product synthesis, see: (a) Patel, S. K.; Murat,
K.; Py, S.; Vallee, Y. Org. Lett. 2003, 5, 4081ꢀ4084; (b) Tamura, O.;
Iyama, N.; Ishibashi, H. J. Org. Chem. 2004, 69, 1475ꢀ1480; (c)
SánchezꢀIzquierdo, F.; Blanco, P.; Busque, F.; Alibés, R.; March, P.;
Figueredo, M.; Font, J.; Parella, T. Org. Lett. 2007, 9, 1769ꢀ1772; (d)
Shibue, T.; Hirai, T.; Okamoto, I.; Morita, N.; Masu, H.; Azumaya, I.;
Tamura, O. Chem. Eur. J. 2010, 16, 11678ꢀ11688.
16. (a) For a recent comprehensive review, see: Org. React., Denmark,
S.E., Ed.; John Wiley & Sons: Hoboken, NJ, 2016, vol. 88. (b) For an
excellent representative example, see: Yu, F.; Chen, P.; Liu, G. Org.
Chem. Front. 2015, 2, 819.
17. Beauchemin, A. M. Org. Biomol. Chem. 2013, 11, 7039ꢀ7050.
18. Krenske, E. H.; Davison, E. C.; Forbes, I. T.; Warner, J. A.; Smith, A.
L.; Holmes, A. B.; Houk, K. N. J. Am. Chem. Soc. 2012, 134,
2434ꢀ2441.
19. Moran, J.; Gorelsky, S. I.; Dimitrijevic, E.; Lebrun, M.ꢀE.; Bédard,
A.ꢀC.; Séguin, C.; Beauchemin, A. M. J. Am. Chem. Soc. 2008, 130,
17893ꢀ17906.
20. Beauchemin, A. M.; Moran, J.; Lebrun, M. E.; Seguin, C.;
Dimitrijevic, E.; Zhang, L.; Gorelsky, S. I. Angew. Chem. Int. Ed.
2008, 47, 1410ꢀ1413.
21. Roveda, J.ꢀG. g.; Clavette, C.; Hunt, A. D.; Gorelsky, S. I.; Whipp, C.
J.; Beauchemin, A. M. J. Am. Chem. Soc. 2009, 131, 8740ꢀ8741.
22. Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2013, 135, 6747ꢀ6749.
23. MacDonald, M. J.; Schipper, D. J.; Ng, P. J.; Moran, J.; Beauchemin,
A. M. J. Am. Chem. Soc. 2011, 133, 20100ꢀ20103.
24. Guimond, N.; MacDonald, M. J.; Lemieux, V.; Beauchemin, A. M. J.
Am. Chem. Soc. 2012, 134, 16571ꢀ16577.
25. Bishop, R.; Brooks, P.; Hawkins, S. C. Synthesis 1988, 997ꢀ999.
26. Grigg, R.; Markandu, J.; Perrior, T.; Surendrakumar, S.; Warnock, W.
J. Tetrahedron Lett. 1990, 31, 559ꢀ562.
27. Peng, X.; Tong, B. M.; Hirao, H.; Chiba, S. Angew. Chem. Int. Ed.
2014, 53, 1959ꢀ1962.
28. (a) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc.
2011, 133, 1694ꢀ1697. (b) Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li,
Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem. Int. Ed. 2012, 51,
1244ꢀ1247. (c) Zhang, H.; Pu, W.; Xiong, T.; Zhou, X.; Sun, K.; Liu,
Q.; Zhang, Q. Angew. Chem. Int. Ed. 2013, 52, 2529ꢀ2533. (d) Zhang,
H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem. Int. Ed.
2014, 53, 11079ꢀ11083. (e) Zheng, G.; Li, Y.; Han, J.; Xiong, T.;
Zhang, Q. Nat. Commun 2015, 6, 7011. (f) Zhang, G.; Xiong, T.;
Wang, Z.; Xu, G.; Wang, X.; Zhang, Q. Angew. Chem. Int. Ed. 2015,
54, 12649ꢀ12653.
29. Teng, H.ꢀL., Luo, Y.; Wang, B.; Zhang, L.; Nishiura, M.; Hou, Z.
Angew. Chem. Int. Ed. 2016, 55, 15406.
30. See the compound characterization in SI for detailed E/Z ratio for
each compound.
31. The moderate yield of 3zd was due to its mediocre stability upon
isolation.
32. Huple, D. B.; Mokar, B. D.; Liu, R. S. Angew. Chem. Int. Ed. 2015,
54, 14924ꢀ14928.
AUTHOR INFORMATION
Corresponding Author
zhaojb100@nenu.edu.cn; zhangq651@nenu.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support from NNSFC (21402025, 21372041), the
Fundamental Research Funds for the Central Universities
(2412017FZ014), and Changbai Mountain Scholarship Program
are gratefully acknowledged.
REFERENCES
1. Grigorév, I. A. In Nitrile Oxides, Nitrones, and Nitronates in Organic
Synthesis: Novel Strategies in Synthesis, 2nd ed.; Feurer, H., Ed.;
John Wiley & Sons: Hoboken, NJ, 2008; pp 129−434.
2. Anderson, L. L., Asian J. Org. Chem. 2016, 5, 9ꢀ30.
3. For representative reviews, see: (a) Gothelf, K. V.; Jørgensen, K. A.
Chem. Rev. 1998, 98, 863ꢀ909. (b) Nair, V.; Suja, T. D. Tetrahedron
2007, 63, 12247ꢀ12275. (c) Pellissier, H. Tetrahedron 2007, 63,
3235ꢀ3285.
(d) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008,
108, 2887ꢀ2902. (e) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015,
115, 5366ꢀ5412.
4. Mason, R. P. Redox. Biol. 2016, 8, 422ꢀ429.
5. MacKenzie, D. A.; Sherratt, A. R.; Chigrinova, M.; Cheung, L. L.;
Pezacki, J. P. Curr. Opin. Chem. Biol. 2014, 21, 81ꢀ88.
6. (a) Floyd, R. A.; Kopke, R. D.; Choi, C. H.; Foster, S. B.; Doblas, S.;
Towner, R. A. Free Radic. Biol. Med. 2008, 45, 1361ꢀ1374. (b)
Villamena, F. A.; Das, A.; Nash, K. M. Future Med. Chem. 2012, 4,
1171ꢀ1207. (c) Floyd, R. A.; Castro Faria Neto, H. C.; Zimmerman,
G. A.; Hensley, K.; Towner, R. A. Free Radic. Biol. Med. 2013, 62,
145ꢀ156.
7. (a) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synlett 2000,
442ꢀ454. (b) Brandi, A.; Revuelta, J.; Cicchi, S.; Goti, A. Synthesis
2007, 2007, 485ꢀ504.
8. For a comprehensive review on nitrone synthesis, see: Merino, P., in
Science of Synthesis, Padwa, A., Ed.; Georg Thieme Verlag KG,
Germany, 2004, Vol. 27, pp 511ꢀ580.
9. Oxidation of hydroxyamine: (a) Goti, A.; Cicchi, S.; Fedi, V.;
Nannelli, L.; Brandi, A. J. Org. Chem. 1997, 62, 3119ꢀ3125. (b)
Matassini, C.; Parmeggiani, C.; Cardona, F.; Goti, A. Org. Lett. 2015,
17, 4082ꢀ4085.
10. Oxidation of imine: (a) Christensen, D.; Jorgensen, K. A. J. Org.
Chem. 1989, 54, 126ꢀ131. (b) Soldaini, G.; Cardona, F.; Goti, A. Org.
Lett. 2007, 9, 473ꢀ476.
11. Oxidation of amine: (a) Murahashi, S.ꢀI. Angew. Chem. Int. Ed. 1995,
34, 2443ꢀ2465. (b) Murahashi, S.ꢀI.; Mitsui, H.; Shiota, T.; Tsuda, T.;
Watanabe, S. J. Org. Chem. 1990, 55, 1736ꢀ1744. (c) Zonta, C.;
Cazzola, E.; Mba, M.; Licini, G. Adv. Synth. Catal. 2008, 350,
2503ꢀ2506.
12. Nꢀalkylation: (a) Ma, X. P.; Shi, W. M.; Mo, X. L.; Li, X. H.; Li, L.
G.; Pan, C. X.; Chen, B.; Su, G. F.; Mo, D. L. J. Org. Chem. 2015, 80,
10098ꢀ107. (b) Smith, P. A. S.; Roberts, J. E. J. Am. Chem. Soc. 1961,
84, 1197ꢀ1204. (c) Buehler, E. J. Org. Chem. 1967, 32, 261ꢀ265. (d)
33. Liu, R.ꢀH.; Wei, D.; Han, B.; Yu, W. ACS Catal. 2016, 6, 6525ꢀ6530.
34. Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44,
1155ꢀ1171.
35. For
a
stoichiometric intramolecular metalloamination with
hydrazinoalkene, see: Sunsdahl, B.; Smith, A. R.; Livinghouse, T.
Angew. Chem. Int. Ed. 2014, 53, 14352ꢀ14356.
4
ACS Paragon Plus Environment