10.1002/chem.201805236
Chemistry - A European Journal
COMMUNICATION
radical in a tandem cyclisation reaction (Scheme 6). To test this
hypothesis, we designed substrate 42 (see S2 in SI also), capable
of undergoing a second cyclisation and subjected it to our
standard reaction conditions (Scheme 6). The isolated tandem
product was the 7-membered ring heterocycle 43 (14%),
(rationalised in the SI file). The mono-cyclised product 44 was
also isolated (10%). This initial observation of tandem radical
cyclisations supports our proposal that the lifetime of the iminyl
radical is not negligible.
Acknowledgements
Financial support for this work was provided by GSK via the
GSK/University of Strathclyde Centre for Doctoral Training in
Synthetic and Medicinal Chemistry. We also thank Stephen
Richards (GSK) for his assistance with NMR analysis.
Keywords: HAT • nitriles • radical • cyclisation • Iron (III)
[1]
J. Kwlatek, I. L. Mador, J. K. Seyler, J. Am. Chem. Soc. 1962, 84,
304–305.
Scheme 6. HAT-mediated alkene-nitrile-alkene tandem cyclisation reaction.
[2]
[3]
[4]
J. Kwlatek, J. K. Seyler, J. Organomet. Chem. 1965, 3, 421–432.
J. Halpern, R. L. Sweany, J. Am. Chem. Soc. 1977, 99, 8335–8337.
J. Choi, L. Tang, J. R. Norton, J. Am. Chem. Soc. 2007, 129, 234–
240.
[5]
[6]
[7]
[8]
[9]
[10]
T. Mukaiyama, S. Isayama, S. Inoki, K. Kato, T. Yamada, T. Takai,
Chem. Lett. 1989, 449–452.
NMR yields quoted were determined with an internal standard (products
isolated by MDAP and characterised).
S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi,
Chem. Rev. 2016, 116, 8912–9000.
C. Obradors, R. M. Martinez, R. A. Shenvi, J. Am. Chem. Soc.
2016, 138, 4962–4971.
Encouraged by this result, we next applied our methodology
to substrates bearing a cyanamide moiety that could undergo a
tandem cyclisation with an (hetero)aromatic ring (Scheme 7). To
our delight, benzamide 45 underwent the desired transformation
in very good yield (70%) to form spiro-quinazolinone 48. We also
pursued challenging targets 49 and 50, of direct relevance29-31 to
medicinal chemistry programmes. Nicotinic acid-derived
substrate 46 gave 49 as the major product (30%), along with a
small amount of 4-substituted regioisomer (5%); analogously,
pyrazole 47 was converted to the complex fused heterocycle 50,
an otherwise challenging target.
J. C. Lo, Y. Yabe, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 1304–
1307.
J. C. Lo, J. Gui, Y. Yabe, C.-M. Pan, P. S. Baran, Nature 2014, 516,
343–348.
J. C. Lo, Y. Yabe, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 2484–
2503.
[11]
[12]
S. Bordi, J. T. Starr, Org. Lett. 2017, 19, 2290–2293.
M. Saladrigas, C. Bosch, G. V. Saborit, J. Bonjoch, B. Bradshaw,
Angew. Chem. Int. Ed. 2018, 57, 182–186.
[13]
[14]
[15]
D. Griller, P. Schmid, K. U. Ingold, Can. J. Chem. 1979, 57, 831–
834.
B.-W. Anissa Yeung, J. L. M. Contelles, B. Fraser-Reid, J. Chem.
Soc., Chem. Commun. 1989, 1160–1162.
Scheme 7. HAT-mediated alkene-cyanamide-(hetero)aryl tandem cyclisation
reactions.
B. Chenera, C.-P. Chuang, D. J. Hart, L.-Y. Hsu, J. Org. Chem.
1985, 50, 5409–5410.
[16]
[17]
[18]
J. D. Kilburn, Tetrahedron Lett. 1990, 31, 2193–2196.
D. P. Curran, W. Liu, Synlett 1999, 1, 117–119.
R. A. Alonso, C. S. Burgey, B. Venkateswara Rao, G. D. Vite, R.
Vollerthun, M. A. Zottola, B. Fraser-Reid, J. Am. Chem. Soc. 1993,
115, 6666–6672.
[19]
[20]
[21]
[22]
D. L. J. Clive, P. L. Beaulieu, L. Set, J. Org. Chem. 1984, 49, 1313–
1314.
J. Streuff, M. Feurer, P. Bichovski, G. Frey, U. Gellrich, Angew.
Chem. Int. Ed. 2012, 51, 8661–8664.
A. Fernꢀndez-Mateos, S. E. Madrazo, P. H. Teijꢁn, R. R. Gonzꢀlez,
J. Org. Chem. 2009, 74, 3913–3918.
A. Gansäuer, F. Piestert, I. Huth, T. Lauterbach, Synthesis (Stuttg).
2008, 3509–3515.
Isolated yields quoted. [a] Fe(acac)3 20 mol%, 1.05 eq PhSiH3, iPrOH, 50 ºC, 1h,
air. [b] Fe(acac)3 20 mol%, 1.5 eq PhSiH3, 2 eq TFA, iPrOH, 80 ºC, 14h, air - note
5% 4-substituted regioisomer isolated also. 24 h. Reduced yields for the
[23]
[24]
B. B. Snider, B. O. Buckman, J. Org. Chem. 1992, 57, 322–326.
R. Bowman, C. Bridge, P. Brookes, Tetrahedron Lett. 2000, 41,
8989–8994.
*
nitrogen containing heterocycles is due to esterification of the starting
cyanamide with isopropanol.
[25]
[26]
[27]
[28]
[29]
[30]
N. Gandhamsetty, J. Jeong, J. Park, S. Park, S. Chang, J. Org.
Chem. 2015, 80, 7281–7287.
D. Lebœuf, L. Marin, B. Michelet, A. Perez-Luna, R. Guillot, E.
Schulz, V. Gandon, Chem. Eur. J. 2016, 22, 16165–16171.
In summary, we have developed an iron-mediated HAT
reaction between alkenes and nitriles. This work allows for the
formation of hindered ketones, spirocycles and fused bicyclic
systems. The reaction has been optimised to perform catalytically
under air and has been shown to scale-up without significant loss
of yield. Further investigations on cyanamides and other novel
HAT substrates are currently ongoing.
A. M. A. Dias, M. Freire, J. A. P. Coutinho, I. M. Marrucho, Fluid
Phase Equilib. 2004, 222–223, 325–330.
X.-W. Lan, N.-X. Wang, C.-B. Bai, C.-L. Lan, T. Zhang, S.-L. Chen,
Y. Xing, Org. Lett. 2016, 18, 5986–5989.
J. Zheng, Z. Deng, Y. Zhang, S. Cui, Adv. Synth. Catal. 2016, 358,
746–751
J. Zheng, Y. Zhang, D. Wang, S. Cui, Org. Lett. 2016, 18, 1768–
This article is protected by copyright. All rights reserved.