C. Bonini et al. / Tetrahedron Letters 49 (2008) 5455–5457
4. Bonini, C.; Chiummiento, L.; Videtta, V. Synlett 2005, 3067–3070.
5457
Studies to improve the final coupling reactions to the C(4–14)
polyol fragment 17 of strevertene A are ongoing in our laboratory.
In summary, we have achieved a convergent synthesis of com-
pound 2, an advanced C(4–14) polyol fragment toward the total
synthesis of natural macrolide strevertene A (1). Highlights of the
synthesis include the intramolecular oxymercuration–reduction
sequence with the direct formation of the protected syn 1,3-diol
and reductive demercuration to alcohol 6. This important building
block was prepared in only four steps in high yield and
diastereoselectivity.
5. Bonini, C.; Chiummiento, L.; Lopardo, M. T.; Pullez, M.; Colobert, F.; Solladié, G.
Tetrahedron Lett. 2003, 44, 2695–2697.
6. Pak, C. S.; Lee, E.; Lee, G. H. J. Org. Chem. 1993, 58, 1523–1530.
7. For recent reviews see: (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem.,
Int. Ed. 2005, 44, 4490–4527; (b) Schmidt, B.; Hermanns, J. Top. Organomet.
Chem. 2004, 7, 223–267; (c) Fuerstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012–
3043; (d) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
8. For previous syntheses of alcohol 6 see: (a) Nicolaou, K. C.; Daines, R. A.;
Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc. 1988,
110, 4672–4685; (b) Mohr, P. Tetrahedron Lett. 1992, 33, 2455–2458; (c)
Anderson, C. A.; Rychnovsky, S. D. Org. Lett. 2002, 4, 3075–3078; For ent-6 see:
(d) Escudier, J. M.; Baltas, M.; Gorrichon, L. Tetrahedron 1993, 49, 5253–5266;
(e) Solladié, G.; Hutt, J. Tetrahedron Lett. 1987, 28, 797–800.
Progress toward the total synthesis of strevertene A will be
reported in due course.
9. Hydrogenation of 12 with several protocols (Pd/C 5% and 10% in MeOH or in
EtOAc, PhSSiMe3 in CH2Cl2) gave always competitive deprotection of acetonide
or degradation of the substrate.
10. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287.
11. Phosphonium salt was prepared as reported: Paquette, L. A.; Chang, S.-K. Org.
Lett. 2005, 7, 3111–3114.
12. (a) Bonini, C.; Chiummiento, L.; Videtta, V. Synlett 2006, 2079–2082; (b)
Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563; (c) Baudin, J. B.;
Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 336.
13. Wittig reaction was performed as reported for a similar aldehyde: Evans, D. A.;
Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, 112, 5290–
5313.
Acknowledgment
Financial support was provided by USB.
Supplementary data
Supplementary data associated with this article can be found, in
14. Several reaction conditions were tested for the olefination. When KHMDS,
NaHMDS, and LiHMDS as bases in THF as solvent were used in Julia reaction,
nearly no conversion was observed. Instead when BuLi and LiHMDS were used
in THF for the Wittig reaction, only by-products were observed.
References and notes
15. Spectroscopic data of compound 2: ½a D20
ꢁ
+1.4 (c 0.97, CHCl3); 1H NMR (500 MHz,
CDCl3): d 7.66 (m, 5H), 7.40–7.34 (m, 10H), 4.62 (d, J = 12.5 Hz, 1H) 4.58 (d,
J = 12.5 Hz, 1H), 4.14–4.04 (m, 2H), 3.88–3.76 (m, 2H), 3.72–3.60 (m, 2H), 3.54–
3.46 (m, 1H), 3.42–3.34 (m, 1H), 1.73–1.67 (m, 4H), 1.46, 1.44, 1.43, 1.42 (4s,
12H), 1.05, 0.94–0.82 (m, 8H); 13C NMR (100 MHz, CDCl3): d 138.2, 135.5,
134.0, 133.9, 129.7, 129.6, 128.4, 127.8, 127.6, 127.6, 125.5, 98.5, 98.4, 73.7,
73.5, 68.8, 68.6, 68.5, 65.7, 59.7, 39.3, 37.1, 36.3, 33.8, 31.9, 30.3, 29.7, 26.8,
22.7, 20.3, 19.8, 19.2. Anal. Calcd for C41H58O6Si: C, 72.96; H, 8.66. Found: C,
72.98; H, 8.68.
1. Schlingmann, G.; Milne, L.; Borders, D. B.; Carter, G. T. Tetrahedron 1999, 55,
5977–5990.
2. Guo, J.; Schlingmann, G.; Carter, G. T.; Nakanishi, K.; Berova, N. Chirality 2000,
12, 43–51.
3. (a) Bonini, C.; Campaniello, M.; Chiummiento, L.; Videtta, V. Tetrahedron, in
2000, 2, 403–405; (c) Dreher, S. D.; Hornberger, K. R.; Sarraf, S. T.; Leighton, J. L.
Org. Lett. 2000, 2, 3197–3199.