Journal of the American Chemical Society
COMMUNICATION
differ, which could result from changes in the structure of the
complex or RNA upon incorporation of the base analogues and/or
entropic effects that are not included in the calculations. Never-
theless, the calculations suggest that differences in stacking inter-
actions may contribute to the sensitivity of complex stability to
fluorination position.
(3) (a) Cozzi, F.; Ponzini, F.; Annunziata, R.; Cinquini, M.; Siegel,
J. S. Angew. Chem. 1995, 34, 1019. (b) Collins, S. K.; El-Azizi, Y.;
Schmitzer, A. R. J. Org. Chem. 2007, 72, 6397. (c) Zakarian, J. E.; El-Azizi,
Y.; Collins, S. K. Org. Lett. 2008, 10, 2927. (d) Cockroft, S. L.; Hunter,
C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Am. Chem. Soc. 2005, 127,
8594. (e) Shu, L.; M€uri, M.; Krupkea, R.; Mayor, M. Org. Biomol. Chem.
2009, 7, 1081–1092.
Previous investigations of fluorinated phenyl base analogues in
DNA and RNA helices have suggested that stacking interactions
can be modulated by the position of fluorination. Incorporation
of a series of fluorinated phenyl base analogues into the 50-end of
a DNA helix resulted in a maximum stabilization of the duplex of
1.3 kcal/mol.2a Similar to the results discussed in this paper,
correlations between quadrupole moment, dipole moment,
surface area, or the number of fluorines substituted were not
observed. The authors suggested an important role for dispersive
effects along with dipolar interactions for DNA base stacking.
Investigations of RNA duplexes containing 2-fluorophenyl,
4-fluorophenyl, or 2,4-difluorophenyl base analogues paired with
nonpolar or natural bases suggested the stacking energy with
natural bases increased with increasing fluorination with a
difference of 0.9 kcal/mol between the stacking of phenyl
and 2,4-difluorophenyl and that 2-fluorophenyl may form
slightly stronger stacking interactions than 4-fluorophenyl
(0.2-1 kcal/mol).6c,8b The results of these investigations are
consistent with those reported here on the U1A-RNA complex,
and taken together, they reveal a complex relationship between
fluorination and the stability of biological complexes.
In conclusion, we have shown that the stability of an RRM-
RNA complex is surprisingly sensitive to the position of fluorine
substitution of a phenyl base analogue in the RNA target site.
Changing the position of one fluorine group alters the stability of
the complex by 2.8 kcal/mol. The correlation between experi-
mental results and high level calculations suggests that changes in
the stacking interaction may contribute to the observed altera-
tion of complex stability. These results support an approach of
modifying the electronic character of aromatic groups to mod-
ulate the stability of complexes involving stacking interactions.
(4) (a) Kopitz, H.; Zivkovic, A.; Engels, J. W.; Gohlke, H. ChemBio-
Chem 2008, 9, 2619. (b) Waters, M. L. Biopolymers 2004, 76, 435. (c)
Zahn, A.; Brotschi, C.; Leumann, C. J. Chem.—Eur. J. 2005, 11, 2125.
(d) Mathis, G.; Hunziker, J. Angew. Chem., Int. Ed. 2002, 41, 3203. (e)
Gorske, B. C.; Blackwell, H. E. J. Am. Chem. Soc. 2006, 128, 14378.
(5) (a) Clꢀery, A.; Blatter, M.; Allain, F. H. T. Curr. Opin. Struct. Biol
2008, 18, 290. (b) Green, M. R. Annu. Rev. Cell Biol. 1991, 7, 559. (c)
Boelens, W. C.; Jansen, E. J. R.; van Venrooij, W. J.; Stripecke, R.; Mattaj,
I. W.; Gunderson, S. I. Cell 1993, 72, 881. (d) Liang, S.; Lutz, C. S. RNA
2006, 12, 111. (e) Phillips, C.; Pachikara, N.; Gunderson, S. I. Mol. Cell.
Biol. 2004, 24, 6162. (f) Oubridge, C.; Ito, N.; Evans, P. R.; Teo, C. H.;
Nagai., K. Nature 1994, 372, 432. (g) Kranz, J. K.; Lu, J.; Hall, K. B.
Protein Sci. 1996, 5, 1567. (h) Showalter, S. A.; Hall, K. B. J. Mol. Biol.
2004, 335, 465.
(6) (a) Zhou, P.; Zou, J.; Tian, F.; Shang, Z. J. Chem. Inf. Model. 2009,
49, 2344. (b) Kool, E. T.; Sintim, H. O. Chem. Commun. 2006, 3665. (c)
Parsch, J.; Engels, J. W. J. Am. Chem. Soc. 2002, 124, 5664. (d) M€uller, K.;
Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(7) (a) Guckian, K. M.; Krugh, T. R.; Kool, E. T. Nat. Struct. Biol.
1998, 5, 954. (b) Minasov, G.; Matulic-Adamic, J.; Wilds, C. J.; Haeberli,
P.; Usamn, N.; Beigelman, L.; Egli, M. RNA 2000, 6, 1516. (c) Guckian,
K. M.; Krugh, T. R.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 6841. (d)
Zacharias, M.; Engels, J. W. Nucleic Acids Res. 2004, 32, 6304.
(8) (a) Jensen, S. H.; Limberg, G.; Pedersen, C. Carbohydr. Res.
1997, 302, 109. (b) Parsch, J.; Engels, J. W. Helv. Chim. Acta 2000, 83,
1791.
(9) Ghose, A. K.; Crippen, G. M. J. Comput. Chem. 1986, 7, 565.
(10) (a) Sponer, J.; Hobza, P. Chem. Phys. Lett. 1997, 267, 263. (b)
Sponer, J.; Leszczynski, J.; Hobza, P. Biopolymers 2002, 61, 3. (c)
Churchill, C. D. M.; Wetmore, S. D. J. Phys. Chem. B. 2009, 113,
16046. (d) Rutlege, L. R.; Durst, H. F.; Wetmore, S. D. J. Chem. Theory
Comput. 2009, 5, 1400. (e) Gung, B. W.; Amicangelo, J. C. J. Org. Chem.
2006, 71, 9261.
’ ASSOCIATED CONTENT
S
Supporting Information. Description of syntheses, bind-
b
ing reactions, and calculations. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We are grateful to Prof. Petersson and Prof. Novick for
discussions on the calculations and to Prof. K. Nagai for the
expression vector for U1A. Funding was provided by NSF
(MCB-1019958), NIH (GM-056857), and the Petroleum Re-
search Fund.
’ REFERENCES
(1) (a) Allers, J.; Shamoo, Y. J. Mol. Biol. 2001, 311, 75. (b) Baker,
C. M.; Grant, G. H. Biopolymers 2007, 85, 456.
(2) (a) Lai, J. S.; Qu, J.; Kool, E. T. Angew. Chem. 2003, 42, 5973. (b)
Guckian, K. M.; Schweitzer, B. A.; Ren, R. X.; Sheils, C. J.; Tahmassebi,
D. C.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 2213.
3689
dx.doi.org/10.1021/ja102601h |J. Am. Chem. Soc. 2011, 133, 3687–3689