5842
A. Kalusa et al. / Tetrahedron Letters 49 (2008) 5840–5842
4. Takeuchi, Y.; Koike, M.; Azuma, K.; Nishioka, H.; Abe, H.; Kim, H.-S.; Wataya, Y.;
As shown in Table 3, both aromatic and heteroaromatic amines
Harayama, T. Chem. Pharm. 2001, 49, 721–725.
underwent cyclocondensation with imidoyl chlorides 12 in good to
excellent yields. Anilines carrying electron-withdrawing groups
gave good yields (entry 6). Weakly nucleophilic aminopyridines
also reacted successfully (entry 10) even when sterically hindered
(entry 4). 5-Bromo-2-aminopyridine (Table 3, entry 15) gave only a
moderate yield, possibly due to the presence of an electron-with-
drawing bromine in the 5 position. The presence of a methyl group
ortho to the amino group did not affect cyclocondensation (Table 3,
entries 4 and 5). In contrast to the microwave reaction, conven-
tional heating of the imidoyl chloride 12 with an aromatic amine
under reflux for 24 h gave the corresponding 2,3-diaryl (3H)-qui-
nazolin-4-ones in low yields along with side products. This new
method offers a considerable improvement in yields in comparison
to the previous two routes discussed. For example, compounds 5c
and 5e were obtained in 85% and 83% yields, respectively, from the
corresponding imidoyl chloride. Using the previously reported
routes, yields of only 7% and 12%, respectively, were obtained.
In summary, we have developed a practical and efficient route
to 2,3-diaryl (3H)-quinazolin-4-ones. The key step is the cyclocon-
densation of imidoyl chloride 12 with an aryl amine using micro-
wave conditions.19 This procedure was used to synthesise a
series of 2,3-diaryl substituted (3H)-quinazolin-4-ones for biologi-
cal screening in our research programme.
5. Rudolph, J.; Esler, W. P.; O’Connor, S.; Coish, P. D. G.; Wickens, P. L.; Brands, M.;
Bierer, D. E.; Bloomquist, B. T.; Bondar, G.; Chen, L.; Chuang, C.-Y.; Claus, T. H.;
Fathi, Z.; Fu, W.; Khire, U. R.; Kristie, J. A.; Liu, X.-G.; Lowe, D. B.; McClure, A. C.;
Michels, M.; Ortiz, A. A.; Ramsden, P. D.; Schoenleber, R. W.; Shelekhin, T. E.;
Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S. J.; Livingston, J. N.;
Sweet, L. J.; Bullock, W. H. J. Med. Chem. 2007, 50, 5202–5216.
6. Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H. S.; Wataya, Y.;
Harayama, T. Tetrahedron 2001, 57, 1213–1218.
7. Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773–2777.
8. Wang, L.; Xia, J.; Qin, F.; Qian, C.; Sun, J. Synthesis 2003.
9. Xue, S.; McKenna, J.; Shieh, W.-C.; Repic, O. J. Org. Chem. 2004, 69, 6474–
6477.
10. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Baghbanzadeh, M. Tetrahedron Lett. 2005,
46, 7051–7053.
11. Errede, L. A. J. Org. Chem. 1976, 41, 1763–1765.
12. Komaraiah, A.; Sailu, B.; Reddy, P. S. N. Synth. Commun. 2008, 38, 114–
121.
13. Shcherbakova, I.; Balandrin, M. F.; Fox, J.; Ghatak, A.; Heaton, W. L.; Conklin, R.
L. Bioorg. Med. Chem. Lett. 2005, 15, 1557–1560.
14. Wang, S.; Ryder, H.; Pretswell, I.; Depledge, P.; Milton, J.; Hancox, T. C.; Dale, I.;
Dangerfield, W.; Charlton, P.; Faint, R.; Dodd, R.; Hassan, S. Bioorg. Med. Chem.
Lett. 2002, 12, 571–574.
15. Liu, J.-F.; Lee, J.; Dalton, A. M.; Bi, G.; Yu, L.; Baldino, C. M.; McElory, E.; Brown,
M. Tetrahedron Lett. 2005, 46, 1241–1244.
16. Kostakis, I. K.; Elomri, A.; Seguin, E.; Iannelli, M.; Besson, T. Tetrahedron Lett.
2007, 48, 6609–6613.
17. Coppola, Gary M. Synthesis 1980, 505–536.
18. Zhichkin, P.; Kesicki, E.; Treiberg, J.; Bourdon, L.; Ronsheim, M.; Ooi, H. C.;
White, S.; Judkins, A.; Fairfax, D. Org. Lett. 2007, 9, 1415–1418.
19. General procedure for synthesis of imidoyl chloride 12: Thionyl chloride (5 mL)
was added to methyl 2-(picolinamido)benzoate (0.36 g, 1.4 mmol), and the
resulting mixture was heated at 70 °C for 24 h. The excess thionyl chloride was
removed under reduced pressure, and the crude product was dried under high
vacuum at 70 °C for 30 min to afford a pale yellow solid in quantitative yield.
General procedure for synthesis of 2,3-diarylsubstituted quinazolin-4-ones:
Pyridine (1.5 mL) was added to imidoyl chloride 12 (0.328 g, 1.19 mmol) and
p-toluidine (0.191 g, 1.78 mmol), and the resulting mixture was heated at
200 °C in a Biotage Initiator SixtyTM microwave for 30 min. The excess pyridine
was removed under reduced pressure, and the residue was purified by flash
chromatography (silica; DCM–ether; 1:1) to afford 2-(pyridin-2-yl)-3-p-
tolylquinazolin-4(3H)-one 5e (0.31 g, 83%), as a white solid: mp 206–207 °C;
dH (500 MHz; CDCl3); 2.31 (3H, s, methyl C–H), 7.07–7.11 (4H, m, aryl C–H),
7.21 (1H, dd, J = 7.8, 4.8 Hz, aryl C–H), 7.52 (1H, d, J = 7.8 Hz, aryl C–H), 7.59
(1H, t, J = 7.8 Hz, aryl C–H), 7.67 (1H, m, aryl C–H), 7.85 (1H, m, aryl C–H), 7.90
(1H, d, J = 7.9 Hz, aryl C–H), 8.41 (1H, d, J = 7.9 Hz, aryl C–H), 8.46 (1H, d,
J = 4.8 Hz, aryl C–H); dC (125 MHz; CDCl3) 21.1(CH3), 121.5, 123.8, 124.4, 127.3,
127.7, 127.8, 128.7, 129.5, 134.6, 134.7, 136.5, 138.3, 147.1, 148.8, 153.1, 153.4,
162.1 (C@O); LCMS (ESI): Rt = 4.14 min: m/z 314.12 ([M+H]+, 100%); HRMS
found 314.1278, C20H16N3O [M+H]+ requires 314.1288.
Acknowledgements
This work was supported by Cancer Research UK [CRUK]
programme grant number CC309/A8274. We also thank Dr. Amin
Mirza and Mr Meirion Richards for their assistance with NMR
and mass spectrometry.
References and notes
1. Fowler, K. W.; Huang, D.; Kesicki, E. A.; Ooi, H. C.; Oliver, A. R.; Ruan, F.;
Treiberg, J.; (Icos Corporation, USA). Application: WO2005113556, 2005-
US16778 2005; p 247. Chem. Abstr.2006, 144, 22759.
2. Jiang, J. B.; Hesson, D. P.; Dusak, B. A.; Dexter, D. L.; Kang, G. J.; Hamel, E. J. Med.
Chem. 1990, 33, 1721–1728.
3. Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.-S.; Wataya, Y.;
Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3163–3166.