1134
M. D. Surman et al. / Tetrahedron Letters 43 (2002) 1131–1134
NMR (75 MHz, CDCl3): l 19.01, 28.30, 34.32, 41.61,
C14H18NO2 (M+H)+ 232.1338, found 232.1348.
66.14, 81.73, 127.61, 135.20, 157.14; HRMS (FAB) calcd
for C11H20NO3 (M+H)+ 214.1443, found 214.1448.
(b) Characterization data for 17: white solid; mp 71–
73°C; IR (TF) 3256, 2957, 2926, 2875, 1697, 1456, 1415,
(e) Characterization data for 22: clear oil; IR (TF) 3372,
2980, 1738, 1726, 1530, 1502, 1440, 1367, 1248, 1168
1
cm−1; H NMR (300 MHz, CDCl3): l 1.18 (d, J=7.5 Hz,
3H), 1.41 (s, 9H), 2.53 (m, 2H), 2.78 (m, 1H), 3.67 (s,
6H), 4.15 (m, 1H), 5.20 (d, J=9.0 Hz, 1H); 13C NMR (75
MHz, CDCl3): l 13.88, 28.28, 36.52, 43.16, 49.56, 51.72,
51.78, 79.49, 155.15, 171.75, 174.58; HRMS (FAB) calcd
for C13H24NO6 (M+H)+ 290.1604, found 290.1613.
(f) Characterization data for 23: clear oil; IR (TF) 3351,
1
1329, 1271, 1212, 1101, 697 cm−1; H NMR (300 MHz,
DMSO-d6): l 0.99 (d, J=7.2, 3H), 2.43 (m, 2H), 2.84 (m,
1H), 4.30 (q, J=7.5 Hz, 1H), 5.10 (s, 2H), 5.54 (m, 1H),
1
5.59 (m, 1H), 7.34 (m, 5H), 9.32 (s, 1H); H NMR (300
MHz, CDCl3): l 1.07 (d, J=7.2, 3H), 2.47 (m, 1H), 2.68
(m, 1H), 3.05 (m, 1H), 4.38 (overlapping ddd, J=7.2, 7.2,
8.7 Hz, 1H), 5.18 (d, J=3.0 Hz, 2H), 5.57 (m, 1H), 5.63
(m, 1H), 7.35 (m, 5H), 7.98 (bs, 1H); 13C NMR (75 MHz,
DMSO-d6): l 18.89, 34.02, 41.17, 65.55, 66.35, 127.69,
127.75, 127.90, 128.36, 135.04, 136.69, 156.51; 13C NMR
(75 MHz, CDCl3): l 18.79, 34.27, 41.46, 66.12, 67.85,
127.49, 127.87, 128.17, 128.45, 135.07, 135.89, 157.53;
HRMS (FAB) calcd for C14H18NO3 (M+H)+ 248.1287,
found 248.1292.
2953, 1734, 1522, 1457, 1437, 1238, 1205, 1044, 740 cm−1
;
1H NMR (500 MHz, CDCl3): l 1.21 (d, J=7.5 Hz, 3H),
2.58 (m, 2H), 2.83 (m, J=7.5 Hz, 1H), 3.66 (s, 3H), 3.68
(s, 3H), 4.23 (m, 1H), 5.09 (s, 2H), 5.47 (d, J=9.5 Hz,
1H), 7.34 (m, 5H); 13C NMR (75 MHz, CDCl3): l 14.01,
36.32, 43.11, 50.24, 51.77, 52.60, 66.85, 128.03, 128.11,
128.50, 136.50, 155.78, 171.65, 174.46; HRMS (FAB)
calcd for C16H22NO6 (M+H)+ 324.1447, found 324.1453.
17. The anti-1,2-stereochemical assignment of the major
product 17 was proven through the synthesis of known
trans-2-methyl-cyclopentyl-benzamide from hydroxamic
acid 17. anti-1,2-Hydroxamic acid 17 was exposed to
hydrogenation conditions to remove the Cbz group and
reduce the NꢀO bond and cyclopentenyl olefin. The
resulting cyclopentyl amine i was treated with benzoyl
chloride to give the benzamide derivative ii. The melting
point of ii (114–115°C) was consistent with the literature
value (116°C).18 The melting point of cis-2-methyl-
cyclopentyl-benzamide is 85°C.
(c) Characterization data for 20: white solid; mp=40–
43°C; IR (TF) 3343, 2977, 2930, 2870, 1692, 1530, 1502,
1
1366, 1280, 1248, 1172, 1076, 1042, 1011 cm−1; H NMR
(300 MHz, CDCl3): l 1.06 (d, J=6.9 Hz, 3H), 1.43 (s,
9H), 2.08 (dd, J=4.8, 16.5 Hz, 1H), 2.47 (m, 1H), 2.75
(dd, J=7.2, 16.5 Hz, 1H), 3.77 (bs, 1H), 4.67 (bs, 1H),
5.59 (s, 2H); 13C NMR (75 MHz, CDCl3): l 18.60, 28.38,
39.46, 47.52, 57.75, 78.99, 127.56, 135.14, 155.70; HRMS
(FAB) calcd for C11H20NO2 (M+H)+ 198.1494, found
198.1509.
(d) Characterization data for 21: white solid; mp=59–
60°C; IR (TF) 3315, 3032, 2956, 2870, 1685, 1541, 1455,
1279, 1246, 1080, 1034, 974, 760, 709, 694 cm−1; 1H NMR
(300 MHz, CDCl3): l 1.09 (d, J=6.9 Hz, 3H), 2.13 (ddd,
J=1.5, 4.8, 16.8 Hz, 1H), 2.52 (m, 1H), 2.81 (dd, J=7.5,
16.8 Hz, 1H), 3.87 (m, 1H), 4.84 (bs, 1H), 5.10 (s, 2H),
5.62 (s, 2H), 7.34 (m, 5H); 13C NMR (75 MHz, CDCl3):
l 18.58, 39.55, 47.62, 58.44, 66.63, 120.31, 127.55, 128.07,
128.52, 135.16, 136.73, 156.17; HRMS (FAB) calcd for
18. Hu¨ckel, W.; Kupka, R. Chem. Ber. 1956, 89, 1694.
19. Mattingly, P. G.; Miller, M. J. J. Org. Chem. 1980, 45,
410.
20. Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58,
3675.
21. Treatment of O-benzyl hydroxamate 18 under these
ozonolysis conditions resulted in only a modest yield
(31%) of the corresponding diester 19.