T. Meng et al. / Tetrahedron Letters 53 (2012) 4555–4557
4557
4. For recent examples on polyyne synthesis via the FBW rearrangement, see: (a)
Spantulescu, A.; Luu, T.; Zhao, Y.; McDonald, R.; Tykwinski, R. R. Org. Lett. 2008,
10, 609–612; (b) Kendall, J.; McDonald, R.; Ferguson, M. J.; Tykwinski, R. R. Org.
Lett. 2008, 10, 2163–2166; (c) Luu, T.; Morisaki, Y.; Cunningam, N.; Tykwinski,
R. R. J. Org. Chem. 2007, 72, 9622–9629; (d) Eisler, S.; Slepkov, A. D.; Elliott, E.;
Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. J. Am. Chem. Soc. 2005,
127, 2666–2667; (e) Tobe, R.; Umeda, R.; Iwasa, N.; Sonoda, M. Chem. Eur. J.
2003, 9, 5549–5559; (f) Shi, S.; Annabelle, L. K.; Chernike, E. T.; Eisler, S.;
Tykwinski, R. R. J. Org. Chem. 2003, 68, 1339–1347; (g) Rezaei, H.; Yamanoi, S.;
Chemla, F.; Normant, J. F. Org. Lett. 2000, 2, 419–421; (h) Eisler, S.; Tykwinski, R.
R. J. Am. Chem. Soc. 2000, 122, 10736–10737.
sponding FBW rearrangement product, the o-bromophenyl acety-
lene 5 was exclusively formed and obtained in 86% isolated yield.
However, when the reaction was carried out in THF, butatriene
derivatives 6 mainly as E-isomers were obtained as the major
products,12 via direct dimerization of the carbenoid intermediates
7 and/or 8. The butatriene derivative 6c was obtained as a mixture
of 1:1 E/Z isomers. In addition, when the R group was butyl, we
also detected trace amount of the Z-form butatriene by the NMR
spectra.
Obviously, the solvent polarity and coordination ability seem
crucial for these two different transformations. Hexane is found
to be the most effective solvent for the FBW rearrangement, while
most polar solvents such as THF will afford butatriene derivatives
as major products. The structure of E-6c was confirmed by single-
crystal X-ray structural analysis (Fig. 1).13
5. For a recent review on butatriene synthesis, see: Leroyer, L.; Maraval, V.;
Chauvin, R. Chem. Rev. 2012, 112, 1310–1343.
6. (a) Fu, X.; Chen, J.; Li, G.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 5500–5504; (b)
Liu, Y.; Gao, H.; Zhou, S. Angew. Chem., Int. Ed. 2006, 45, 4163–4167; (c) Uno, H.;
Kasahara, K.; Nibu, N.; Nagaoka, S.; Ono, N. J. Org. Chem. 2000, 65, 1615–1622;
(d) Moken, P. A.; Bachand, P. C.; Swenson, D. C.; Burton, D. J. J. Am. Chem. Soc.
1993, 115, 5430–5439; (e) Iyoda, M.; Tanaka, S.; Otani, H.; Nose, M.; Oda, M. J.
Am. Chem. Soc. 1988, 110, 8494–8500.
7. (a) Kobrich, G.; Heinemann, H.; Zundorf, W. Tetrahedron 1967, 23, 656–684; (b)
Komatsu, K.; Kamo, H.; Tsuji, R.; Takeuchi, K. J. Org. Chem. 1993, 58, 3219–3221;
(c) Knorr, R.; Pires, C.; Freudenreich, J. J. Org. Chem. 2007, 72, 6084–6090.
8. (a) Liang, Y.; Meng, T.; Zhang, H.-J.; Xi, Z. Synlett 2011, 911–914; (b) Zhang, H.-
J.; Wei, J.; Zhao, F.; Liang, Y.; Wang, Z.; Xi, Z. Chem. Commun. 2010, 46, 7439–
7441. see also:; (c) Xi, Z. Acc. Chem. Res. 2010, 43, 1342–1451; (d) Wang, Q.;
Zhang, W.-X.; Lin, C.; Xi, Z. Chin. Sci. Bull. 2010, 55, 2915–2923; (e) Xi, Z. Sci.
China Chem. 2009, 39, 1115–1124; (f) Liu, G.; Song, Z.; Wang, C.; Xi, Z. Chin. J.
Org. Chem. 2007, 27, 837–846.
In summary, we developed a convenient synthesis of gem-
dihaloenynes from 1,1,4,4-tetrahalo-1,3-butadienes through the
Fritsch–Buttenberg–Wiechell (FBW) rearrangement. Butatriene
derivatives were also obtained efficiently.
Acknowledgments
9. (a) Zhang, H.-J.; Song, Z.; Wang, C.; Bruneau, C.; Xi, Z. Tetrahedron Lett. 2008, 49,
624–627; (b) Xi, Z.; Song, Z.; Liu, G.; Liu, X.; Takahashi, T. J. Org. Chem. 2006, 71,
3154–3158; (c) Xi, Z.; Liu, X.; Lu, J.; Bao, F.; Fan, H.; Li, Z.; Takahashi, T. J. Org.
Chem. 2004, 69, 8547–8549.
This work was supported by the Natural Science Foundation of
China, and the Major State Basic Research Development Program
(2011CB808700).
10. Preparation of gem-dibromoenynes 3: To a stirred solution of 1,1,4,4-mixed-
tetrahalo-1,3-butadiene (5 mmol) in dry hexane (20 mL) at ꢀ78 °C (acetone/
dry ice) was added n-BuLi (3.2 mL, 1.6 M in hexane) dropwise. After 5 min the
reaction was completed, and the suspended mixture was filtered to remove
solid residue, then it was washed with hexane (3 ꢁ 10 mL). The combined
filtrates were concentrated under reduced pressure to give the pure product of
gem-dibromoenynes 3 without further purification.
Supplementary data
Supplementary data (experimental procedures and character-
ization data for all new compounds and copies of NMR spectra)
associated with this article can be found, in the online version, at
Compound 3a, yellow oil, isolated yield 95% (1.5 g); 1H NMR (400 MHz, CDCl3)
d: 0.93 (t, J = 7.3 Hz, 6H, CH3), 1.31–1.59 (m, 8H, CH2), 2.29–2.37 (m, 4H, CH2);
13C NMR (100 MHz, CDCl3) d: 13.53 (CH3), 13.84 (CH3), 19.37 (CH2), 21.89
(CH2), 22.03 (CH2), 29.67 (CH2), 30.42 (CH2), 36.82 (CH2), 79.39 (quat. C), 94.47
(quat. C), 98.81 (quat. C), 131.44 (quat. C). HRMS (EI, m/z) calcd for
[C12H18Br2]+: 321.9755; found 321.9750.
References and notes
11. For gem-dihaloenyne synthesis using other methods, see: (a) Fang, Y.-Q.;
Lifchits, O.; Lautens, M. Synlett 2008, 413–417; (b) Azyat, K.; Jahnke, E.; Rankin,
T.; Tykwinski, R. R. Chem. Commun. 2009, 433–435; (c) Rankin, T.; Tykwinski, R.
R. Org. Lett. 2003, 5, 213–216; (d) Martín, R.; Rodríguez, M. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2006, 45, 7079–7082.
12. Typical Procedure for the preparation of butatrienes 6: In a 50 mL of flask, o-halo-
(2,2-dihalovinyl)benzene 2 (1.0 mmol) was dissolved in dry THF (5 mL) at
ꢀ78 °C. n-BuLi (0.6 mL, 1.6 M in hexane) was added dropwise very slowly and
the reaction was stirred at room temperature for 15 min. The solvent of the
reaction mixture was evaporated under vacuum and hexane (20 mL) was
added. After that, the suspended mixture was filtered to remove solid residue.
The filtrate was purified by chromatography to give the butatriene product
(eluent: pentane).
1. For reviews on gem-dihalovinyl systems, see: (a) Chelucci, G. Chem. Rev. 2012,
112, 1344–1462; (b) Legrand, F.; Jouvin, K.; Evano, G. Isr. J. Chem. 2010, 50, 588–
604; (c) Wang, J.-R.; Manabe, K. Synthesis 2009, 1405–1427; (d) Xu, B.; Ma, S.
Chin. J. Org. Chem. 2001, 21, 252–262.
2. (a) Meng, T.; Zhang, W.-X.; Zhang, H.-J.; Liang, Y.; Xi, Z. Synthesis 2012. http://
dx.doi.org/10.1055/s-0032-1316613.; For recent examples on synthetic
applications of gem-dihalovinyl compounds, see: (b) Ye, S.; Liu, J.; Wu, J.
Chem. Commun. 2012, 48, 5028–5030; (c) He, H.-F.; Dong, S.; Chen, Y.; Yang, Y.;
Le, Y.; Bao, W. Tetrahedron 2012, 68, 3112–3116; (d) Zhou, W.; Chen, W.; Wang,
L. Org. Biomol. Chem. 2012, 10, 4172–4178; (e) Chen, W.; Zhang, Y.; Zhang, L.;
Wang, M.; Wang, L. Chem. Commun. 2011, 47, 10476–10478; (f) Wang, Z.-J.;
Yang, F.; Lv, X.; Bao, W. J. Org. Chem. 2011, 76, 967–970; (g) Qin, X.-R.; Cong, X.-
F.; Zhao, D.-B.; You, J.-S.; Lan, J.-B. Chem. Commun. 2011, 47, 5611–5613; (h)
Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416–11417; (i) Wang,
Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034–3037; (j) Xu, H.;
Zhang, Y.; Huang, J.; Chen, W. Org. Lett. 2010, 12, 3704–3707; (k) Arthuls, M.;
Pontikis, R.; Florent, J.-C. Org. Lett. 2009, 11, 4608–4611; (l) Bryan, C. S.;
Braunger, J. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 7064–7068; (m) Ye,
W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. 2009, 3246–3248; (n) Newman, S.
G.; Aureggi, V.; Bryanand, C. S.; Lautens, M. Chem. Commun. 2009, 5236–5238;
(o) Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054–3061; (p) Bryan, C. S.;
Lautens, M. Org. Lett. 2008, 10, 4633–4636; (q) Viera, T. O.; Meaney, L. A.; Shi,
Y.-L.; Alper, H. Org. Lett. 2008, 10, 4899–4901; (r) Fang, Y.-Q.; Lautens, M. J. Org.
Chem. 2008, 73, 538–549; (s) Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361–7364.
3. For reviews on the Fritsch–Buttenberg–Wiechell (FBW) rearrangement, see: (a)
Knorr, R. Chem. Rev. 2004, 104, 3795–3850; (b) Stang, P. J. Chem. Rev 1978, 78,
383–405.
Compound 6a, Yellow oil, isolated yield 53% (126 mg); 1H NMR (300 MHz,
CDCl3): d = 0.80 (t, J = 7.2 Hz, 6H, CH3), 1.31–1.48 (m, 8H, CH2), 2.61 (t,
J = 7.1 Hz, 4H, CH2), 7.09–7.59 (m, 8H, CH); 13C NMR (75 MHz, CDCl3): d = 13.86
(2 CH3), 22.25 (2 CH2), 30.36 (2 CH2), 36.40 (2 CH2), 120.63 (2 quat. C), 122.35
(2 quat. C), 127.08 (2 CH), 128.44 (2 CH), 130.03 (2 CH), 133.46 (2 CH), 140.99
(2 quat. C), 158.63 (2 quat. C). HRMS (EI, m/z) calcd for [C24H26Br2]+: 474.0381,
found 474.0389.
13. For single-crystal X-ray structural analysis of butatriene derivatives, see: (a)
Reichmann, B.; Drexler, M.; Weibert, B.; Szesni, N.; Strittmatter, T.; Fischer, H.
Organometallics 2011, 30, 1215–1223; (b) Suzuki, N.; Ohara, N.; Nishimura, K.;
Sakaguchi, Y.; Nanbu, S.; Fukui, S.; Nagao, H.; Masuyama, Y. Organometallics 2011,
30, 3544–3548; (c) Mathur, P.; Avasare, V. D.; Mobin, S. M. J. Clust. Sci. 2009, 20,
399–415;(d) Akkerman,F. A.;Lentz, D. Angew.Chem., Int.Ed. 2007, 46, 4902–4904;
(e) Bachman, R. E.; Fiseha, A.; Pollack, S. K. J. Chem. Cryst. 1999, 29, 457–462.