C O M M U N I C A T I O N S
Table 1. Synthesis of Cyclopentadienyl-Rhenium Complexes 5
from Ketimines 1, R,ꢀ-Unsaturated Carbonyl Compounds 2, and a
Rhenium Complex 3ba
both the catalyst for the formation of substituted Cp rings and a
component of the desired complexes.13 We hope this versatile and
efficient method for the preparation of Cp complexes will find new
applications.
Acknowledgment. Financial support from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan. Also,
Y.K. appreciates the Sumitomo Foundation, Meiji Seika Co., and
Okayama Foundation for Science and Technology for financial
support.
Supporting Information Available: General experimental proce-
dure, characterization data for a cyclopentadiene derivative and
cyclopentadienyl-rhenium complexes. This material is available free
References
(1) Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds. ComprehensiVe
Organometallic Chemistry II; Elsevier: Oxford, U.K., 1995; Vol. 3-9.
(2) For synthesis of functionalized Cp-metal complexes, see: Butenscho¨n, H.
Chem. ReV. 2000, 100, 1527. Stoll, A. H.; Mayer, P.; Knochel, P.
Organometallics 2007, 26, 6694.
(3) For synthesis of substituted Cp-Re complexes, see: (a) Spradau, T. W.;
Katzenellenbogen, J. A. Organometallics 1998, 17, 2009. (b) Bideau, F. L.;
Pe´rez-Luna, A.; Marrot, J.; Rager, M.-N.; Ste´phan, E.; Top, S.; Jaouen, G.
Tetrahedron 2001, 57, 3939. (c) Bernard, J.; Ortner, K.; Spingler, B.;
Pietzsch, H.-J.; Alberto, R. Inorg. Chem. 2003, 42, 1014. (d) Liu, Y.;
Spingler, B.; Schmutz, P.; Alberto, R. J. Am. Chem. Soc. 2008, 130, 1554.
(4) (a) For reviews, see: Vessie`res, A.; Top, S.; Beck, W.; Hillard, E.; Jaouen,
G. Dalton Trans. 2006, 529. Mease, R. C.; Lambert, C. Semin. Nucl. Med.
2001, 31, 278. (b) Salmain, M.; Gunn, M.; Gorfti, A.; Top, S.; Jaouen, G.
Bioconjugate Chem. 1993, 4, 425. (c) Top, S.; Hafa, H. E.; Vessie`res, A.;
Quivy, J.; Vaissermann, J.; Hughes, D. W.; McGlinchey, M. J.; Mornon,
J.-P.; Thoreau, E.; Jaouen, G. J. Am. Chem. Soc. 1995, 117, 8372. (d)
Spradau, T. W.; Katzenellenbogen, J. A. Bioconjugate Chem. 1998, 9, 765.
(e) Skaddan, M. B.; Wu¨st, F. R.; Katzenellenbogen, J. A. J. Org. Chem.
1999, 64, 8108. (f) Mull, E. S.; Sattigeri, V. J.; Rodriguez, A. L.;
Katzenellenbogen, J. A. Bioorg. Med. Chem. 2002, 10, 1381.
(5) There are several reports on the catalytic C-H bond activation of olefins,
see: (a) Kakiuchi, F.; Tanaka, Y.; Sato, T.; Chatani, N.; Murai, S. Chem.
Lett. 1995, 679. (b) Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem. Soc.
1995, 117, 5371. (c) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. J. Chem. Soc.,
Perkin Trans. 1 1998, 699. (d) Jun, C.-H.; Moon, C. W.; Kim, Y.-M.; Lee,
H.; Lee, J. H. Tetrahedron Lett. 2002, 43, 4233.
(6) For a coordinatively unsaturated Cp-Re complex that catalyzes aliphatic
C-H bond activation, see: Chen, H.; Hartwig, J. F. Angew. Chem., Int.
Ed. 1999, 38, 3391.
(7) For rhenium-catalyzed aromatic C-H bond activation, see: (a) Kuninobu,
Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2005, 127, 13498. (b)
Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc.
2006, 128, 202. (c) Kuninobu, Y.; Nishina, Y.; Shouho, M.; Takai, K.
Angew. Chem., Int. Ed. 2006, 45, 2766. (d) Kuninobu, Y.; Nishina, Y.;
Nakagawa, C.; Takai, K. J. Am. Chem. Soc. 2006, 128, 12376.
a 1 (1.0 equiv), 2 (1.0 equiv), 3b (0.50 equiv). b Isolated yield. Yield
determined by 1HNMR is reported in parentheses. c R ) CH2CHEtnBu.
d Run at 180 °C. e 5e/5e′ ) 1.0:1.8.
Scheme 2. Proposed Mechanism for the Formation of Cp-Re
Complexes
(8) The Cp-Re complex 5a did not work as a catalyst for olefinic C-H bond
activation. This result shows that cyclopentadiene derivative 4 was formed
by rhenium catalyst 3b in the first step.
(9) In the case of an arylimine, the regioselectivity of the insertion of an R,ꢀ-
unsaturated ketone is the same as acrylic esters.7c We examined the
existence of the interconversion between 5e and 5e′;14 however, both 5e
and 5e′ remained unchanged under the reaction conditions with Re2(CO)10
.
It is still unclear why the insertion occurred in the opposite direction in
the case of the R,ꢀ-unsaturated ketone.
(10) Rhenium-catalyzed C-H bond activation occurs only at the ortho-position
of R,ꢀ-unsaturated ketimines. This is in sharp contrast to C-H bond
activation with rhodium or ruthenium catalysts, where carbonyl oxygen
atoms can also act as directing groups. This feature of the rhenium-catalyzed
C-H activation enables R,ꢀ-unsaturated ketimines and carbonyl compounds
to serve different roles.
(11) The insertion step did not occur with either R- or ꢀ-substituted acrylates
(see ref 7c).
(12) (a) Janiak, C.; Schumann, H. AdV. Organomet. Chem. 1991, 33, 291. (b)
Hermann, E. A., Ed. Synthetic Methods of Organometallic and Inorganic
Chemistry; Thieme: New York, 1997; Vol. 8.
(13) One example using this concept is supramolecular chemistry. See: Lehn,
J.-M. Supramolecular Chemistry. Concepts and PerspectiVes; VCH Ver-
lagsgesellschaft: Weinheim, Germany, 1995.
(14) Kuninobu, Y.; Ueda, H.; Kawata, A.; Takai, K. J. Org. Chem. 2007, 72,
6749.
In summary, we have succeeded in the activation of an olefinic
C-H bond with rhenium complexes and utilized it in the domino
synthesis of Cp-Re complexes from R,ꢀ-unsaturated ketimines,
R,ꢀ-unsaturated carbonyl compounds, and Re2(CO)10. Although
there have been many methods for the synthesis of Cp-transition
metal complexes,12 it is usually necessary to synthesize the Cp
ligands in advance. In this reaction, the rhenium complex acts as
JA805921F
9
J. AM. CHEM. SOC. VOL. 130, NO. 43, 2008 14063