C O M M U N I C A T I O N S
Re-face is blocked by the iso-propyl group of the ligand (Figure 1B).
A working model is proposed to correlate the observed stereochemistry.
Imine approaches the CR anion center in a staggered conformation
with the N atom pointing to Cu. The Ts group occupies the valley
formed by the two arene groups if the two rings are electron-deficient
in ligand 4f, giving a (2S,3R) product (Si-face for imine). The imine
attacks the CR with its Re-face when the arene rings are electron-rich
in ligand 4b.
In summary, we have achieved the tuning of diastereoselectivity in
the Mannich reaction of glycine ester with N-tosyl imines through
electronic adjustment of the ligand. Either syn- or anti-diamino acid
derivatives can be obtained in excellent diastereo- and enantioselec-
tivities by ligand modification. Further investigations on the applications
of the electronic factor in asymmetric catalysis are in progress.
Figure 1. (A) ESP charge of different ligands: (a) total charge on the arene;
(b) the charge on the iminoester anion. (B) Calculated structure of 4f-Cu-1
complex and the working model for the reaction with 2.
Table 2. Diastereoselectivity Switch of Mannich Reaction of
Glycine Ester 1 with Imines 2
Acknowledgment. Financially supported by the Major Basic
Research Development Program (Grant 2006CB806106), National
Natural Science Foundation of China (20532050, 20672130), Chinese
Academy of Sciences, Shanghai Committee of Science and Technology
and Croucher Foundation of Hong Kong. Q.P., K.Z., and J.Y. gratefully
acknowledged the Hong Kong Croucher Foundation for a Studentship.
ligand 4b
ligand 4f
yield%
(syn/anti)a,b
yield%
(syn/anti)a,b
entry
2, R
ee%c
ee%c
1
2
3
4
5
6
7
8
9
a, Ph
92 (4:96)
92 (6:94)
96 (87:13)
94 (5:>95)
95 (9:91)
99
96
93
99
99
97
94
99
97
90
97 (>95: 5)
98 (93:7)
94 (83:17)
92 (93:7)
96 (95:5)
99 (93:7)
98 (>95: 5)
72 (>95: 5)
87 (>95: 5)
68 (>95: 5)
99
99
91
98
98
97
96
99
99
99
b, m-MeO-C6H4
c, o-Br-C6H4
d, m-Cl-C6H4
e, p-Br-C6H4
f, p-NO2-C6H4
g, 2-furan
h, Pri
Supporting Information Available: Procedure for the synthesis of
4f, general procedure for Cu-catalyzed Mannich reaction, NMR spectra
and HPLC data for 3, cif files of X-ray analysis of syn-3e and anti-3e.
The coordinates of calculated structures. Complete ref 12. This material
97 (7:93)
99 (10:90)
76 (5:>95)
89 (5:>95)
70 (5:>95)
i, Cy
10
j, Bun
References
a Isolated yield. b The number in parentheses is the ratio of syn/anti,
determined by 1H NMR. c For major stereoisomer, determined by chiral
HPLC.
(1) For reviews: Viso, A.; Ferna´ndez de la Pradilla, R.; Garc´ıa, A.; Flores, A.
Chem. ReV. 2005, 105, 3167.
(2) (a) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2001, 40, 2992. (b) Bernardi, L.; Gothelf, A. S.; Hazell,
R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583. (c) Cutting, G. A.;
Stainforth, N. E.; John, M. P.; Kociok-Ko¨hn, G.; Willis, M. C. J. Am. Chem.
Soc. 2007, 129, 10632. (d) See also: Salter, M. M.; Kobayashi, J.; Shimizu,
Y.; Kobayashi, S. Org. Lett. 2006, 8, 3533.
of 4e-Cu, indicating that 4f-Cu and 4g-Cu might be more reactive
than 4e-Cu. From such hints ligands 4f and 4g were synthesized and
used in the reaction. Indeed, when 4f was used, excellent yield and
syn-selectivity were obtained for the reaction of glycine ester 1 and
imine 2a at -20 °C, giving syn-3a and anti-3a in a ratio of 91:9 (96%
ee for syn-3a) (Table 1, entry 11). While 4g was a ligand, a reduced
syn-selectivity (syn/anti ) 80:20, 93% ee for syn-3a) resulted (entry
13). When the reaction proceeded at -78 °C excellent yield and an
increased syn-selectivity (syn/anti ) 95:5) were observed (entry 12).
Thus, ligand 4f appeared to give both high syn-selectivity and high
reactivity.
Using 4b and 4f as ligands, the Mannich reaction of glycine ester
1 with a wide range of imines 2b-j was studied (eq 2, Table 2). Not
only aromatic imines (entries 1-7) but also aliphatic imines (entries
8-10) were suitable for this reaction, generating R,ꢀ-diamino acid
derivatives 3 in high yields, high diastereoselectivity, and excellent
enantioselectivity. More importantly, a switching of diastereoselectivity
was realized: Ligand 4b gave high anti-selectivity while ligand 4f gave
excellent syn-selectivity for all substrates except for ortho-bromoben-
zalidene imine 2c, for which the same diastereo- and enantioselectivities
were obtained with both ligands 4b and 4f (entry 3). A detailed
understanding of this special ortho-group effect is lacking.
(3) (a) Ooi, T.; Kameda, M.; Fujii, J.; Maruoka, K. Org. Lett. 2004, 6, 2397.
(b) Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.;
Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4564. (c) Shibuguchi, T.;
Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J.
2007, 2, 794. (d) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am.
Chem. Soc. 2007, 129, 3466.
(4) (a) Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
Soc. 2008, 130, 2170. (b) Singh, A.; Johnston, J. N. J. Am. Chem. Soc.
2008, 130, 5866.
(5) For review: Sibi, M. P.; Liu, M. Curr. Org. Chem. 2001, 5, 719.
(6) Examples of tuning diastereoselectivities in catalytic asymmetric reactions: (a)
Liao, W.-W.; Li, K.; Tang, Y. J. Am. Soc. Chem. 2003, 125, 13030. (b)
Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Chi, Z.-F.; Shi, L.-P. J. Org. Chem.
1996, 61, 5762. (c) Ye, S.; Yuan, L.; Huang, Z.-Z.; Tang, Y.; Dai, L.-X.
J. Org. Chem. 2006, 65, 6257. (d) Evans, D. A.; MacMillan, D. W. C.;
Campos, D. K. R. J. Am. Soc. Chem. 1997, 119, 10859. (e) Williams, J. T.;
Bahia, P. S.; Snaith, J. S. Org. Lett. 2002, 4, 3727. (f) Weatherwax, A.;
Abraham, C. J.; Lectka, T. Org. Lett. 2005, 7, 3461. (g) Lu, B. Z.;
Senanayake, C.; Li, N.; Han, Z.; Bakale, R. P.; Wald, S. A. Org. Lett.
2005, 7, 2599. (h) Barluenga, J.; Alonso, J.; Fananas, F. J. J. Am. Chem.
Soc. 2003, 125, 2610. (i) Denmark, S. E.; Wong, K.-T.; Stavenger, R. A.
J. Am. Chem. Soc. 1997, 119, 2333. (j) Sun, X.-W.; Xu, M.-H.; Lin, G.-Q.
Org. Lett. 2006, 8, 4979. (k) Huang, Z.-Z.; Kang, Y.-B.; Zhou, J.; Ye,
M.-C.; Tang, Y. Org. Lett. 2004, 6, 1677.
(7) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumoba-
yashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. J.
Org. Chem. 1994, 59, 3064.
(8) For review: Flanagan, S. P.; Guiry, P. J. J. Organomet. Chem. 2006, 691,
2125.
(9) (a) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem.
Res. 2003, 36, 659. (b) Hou, X. L.; Wu, X. W.; Dai, L. X.; Cao, B. X.;
Sun, J. Chem. Commun. 2000, 1195. (c) Yan, X. X.; Liang, C. G.; Zhang,
Y.; Hong, W.; Cao, B. X.; Dai, L. X.; Hou, X. L. Angew. Chem., Int. Ed.
2005, 44, 6544. (d) Zhang, K.; Peng, Q.; Hou, X. L.; Wu, Y. D. Angew.
Chem., Int. Ed. 2008, 47, 1741. (e) Wu, W. Q.; Peng, Q.; Dong, D. X.;
Hou, X. L.; Wu, Y. D. J. Am. Chem. Soc. 2008, 130, 9717.
(10) (a) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.;
Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979. (b) Tu, T.; Deng, W.-
P.; Hou, X.-L.; Dai, L.-X.; Dong, X.-C. Chem.sEur. J. 2003, 9, 3073.
(11) Sammakia, T.; Stangeland, E. L. J. Org. Chem. 1997, 62, 6104.
(12) The calculations were performed with Gaussian 03 program: Frisch, M. J.;
et al. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
(13) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
The absolute configurations of the syn-3e and anti-3e were assigned
as (2S,3R) and (2S,3S) by X-ray diffraction analysis. The same (2S)
configuration for the two products indicates that the addition of N-Ts
imine is on the Si-face of the Cu-bound iminoester anion with both
4b and 4f ligands. This can be understood based on the fact that the
JA804527R
9
J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008 14363