S. Berglund et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4859–4863
4863
Table 3
In vitro MCH-R1 binding and functional data for 35–40
F
R
R
F
N
N
F
F
N
N
F
F
a
b
a
b
Compound
R
MCH-R1 IC50 (GTP
0.020 (0.122)
c
S IC50
)
(l
M)
Compound
R
MCH-R1 IC50 (GTP
c
S IC50
)
(l
M)
O
N
N
N
N
O
F
F
35
38
0.025 (0.067)
0.066
N
H
*
*
*
*
N
F
F
F
36
0.113
39
40
N
H
H
H
O
N
N
37
0.037 (0.058)
0.026 (0.071)
N
*
*
a
Values are mean of at least two experiments. Compounds competed with 125I-MCH for binding at the human MCH1 receptor (h-MCH-R1) expressed in the HEK293 cell
line.
b
Values are mean of at least two experiments. Functional assay measuring [35S]GTP
c
S accumulation.
tent MCH-R1 antagonists. Modification of the pyrrole and phenyl
rings, as well as the central amine scaffold, indicated stringent
electronic constraints in the MCH-R1 pocket. As a result of our
structural exploration, 11 and 12 were shown to be functional
MCH-R1 antagonists with favorable pharmacokinetic properties
but intolerable cardiovascular safety margins. The subsequent
hERG optimization efforts will be the subject of future publications
from our group.
Table 4
Summary in vitro and in vivo data for 11 and 12
11
12
a
MCH-R1 GTP
hERG IC50
Fu (% free)
c
lM)
S IC50
(
lM)
0.032
0.56
1.2
38
41
6
24
11
10
100
0.015
0.49
3.2
21
34
8.3
20
1.2
14
100
b
(
HLM Clint
(
l
L/min/mg)
Mouse Clint (iv)c (mL/min/kg)
Mouse T1/2 (iv)c (h)
Mouse Vss (iv)c (L/kg)
c
Mouse AUC (po)
(
lM h)
Acknowledgments
c
Mouse T1/2 (po) (h)
Mouse bioavailabilityc (%)
The authors thank their AstraZeneca R&D Mölndal colleagues
Mia Boethius-Litzén for providing MCH-R1 binding and func-
tional data as well as Lars-Olof Larsson and his team for provid-
ing the DMPK data. Clas Landersjö is greatly acknowledged for
providing the structure elucidation by NMR of the isomeric
isoxazoles.
a
Functional assay measuring [35S]GTP
Values are mean of at least two experiments. Patch clamp assay using ION-
c
S accumulation.
b
WORKSTM technology in hERG-expressing CHO cells.
c
Determined following oral administration of a 20
in C57BL female mice.
lM/kg nanosuspension dose
References and notes
the hydrogen bond interaction is indeed very susceptible to dis-
tance and directionality. This is supported by the data for the pyr-
azole (37) and isoxazole (38) derivatives, where the HBA atom is
located in exactly the same position as in 35. As a result, they dis-
played similar potency (IC50 = 37 and 25 nM, respectively) when
compared to 35, as shown in Table 3. Finally, cyclization of the
amide functionality to provide the imidazol-2-one core resulted
in a potent MCH-R1 antagonist (40, IC50 = 26 nM) but without
1. Melnikova, I.; Wages, D. Nat. Drug Discov. 2006, 5, 369.
2. Gomori, A.; Ishiara, A.; Ito, M.; Mashiko, S.; Matsuhita, H.; Yumoto, M.; Ito, M.;
Tanaka, T.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Am. J. Physiol.
Endocrinol. Metab. 2003, 284, E583.
3. Ludwig, D. S.; Tritos, N. A.; Mastaitis, J. W.; Kulkarni, R.; Kokkotou, E.; Elmiqst,
J.; Lowell, B.; Flier, J. S.; Maratos-Flier, E. J. Clin. Invest. 2001, 107, 379.
4. Shimada, M.; Tritos, N. A.; Lowell, B. A.; Flier, J. S.; Maratos-Flier, E. Nature 1998,
396, 670.
5. Rivera, G.; Bocanegra-Garcia, V.; Galiano, S.; Cirauqui, N.; Ceras, J.; Perez, S.;
Aldana, I.; Monge, A. Curr. Med. Chem. 2008, 15, 1025.
the desired improvement in functional activity (GTP
cS
IC50 = 71 nM).
6. Kowalski, T. J.; Sasikumar, T. Biodrugs 2007, 21, 311.
7. Rokosz, L. L. Exp. Opin. Drug Discov. 2007, 2, 1301.
11 and 12 emerged as the most efficacious MCH-R1 antagonists
in this study, displaying GTP S IC50 values of 32 and 15 nM, respec-
8. Souers, A. J.; Gao, J.; Brune, M.; Bush, E.; Wodka, D.; Vasudevan, A.; Judd, A. S.;
Mulhern, M.; Brodjian, S.; Dayton, B.; Shapiro, R.; Hernandez, L. E.; Marsh, K. C.;
Sham, H. L.; Collins, C. A.; Kym, P. R. J. Med. Chem. 2005, 48, 1318.
9. Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato, K.; Shimomura, Y.; Mori,
M.; Murakoshi, H.; Kato, K.; Suzuki, N.; Nishimura, O.; Fujino, M. Eur. J.
Pharmacol. 2002, 438, 129.
10. Giordanetto, F.; Lindberg, J.; Karlsson, O.; Inghardt, T. Abstract of Papers, 232nd
National Meeting of the American Chemical Society, San Francisco, CA, 2006,
Abstract 0410.
11. Cavasotto, C. N.; Orry, A. J. W.; Murgolo, N. J.; Czarniecki, M. F.; Kocsi, S. A.;
Hawes, B. E.; O’Neill, K. A.; Hine, H.; Burton, M. S.; Voigt, J. H.; Abagyan, R. A.;
Bayne, M. L.; Monsma, M. J., Jr. J. Med. Chem. 2008, 51, 581.
12. The preparation of key compounds is described in: (a) Brickmann, K.; Egner, B.
J.; Giordanetto F.; Inghardt, T.; Linusson, A.; Ponten, F. WO2005/090330
(Compounds 6–12, 17–18, 22, 25–26) and in: (b) Egner, B. J.; Giordanetto, F.;
Inghardt, T. WO2006/0685594 (Compounds 35–39).
c
tively, as shown in Table 4. Moreover, the two compounds demon-
strated acceptable free fractions in human plasma and appeared to
be metabolically stable when tested in vitro in Human Liver Micro-
somes (HLM) preparations, as summarized in Table 4. Both 11 and
12 achieved high bioavailability following intravenous (iv) and oral
(po) administration of a 20 lM/kg dose in mice (Table 4). Unfortu-
nately, both derivatives were also found to be potent inhibitors of
the hERG potassium channel, as outlined in Table 4, and this has
represented a major hurdle for their subsequent development.
In summary, the optimization of the HTS hit 1 resulted in the
discovery of 1-phenyl-1H-pyrrol-3-yl-derivatives as novel and po-