ARTICLE
8 Chen, S. H.; Chen, Y. Macromolecules 2005, 38, 53–60.
observed, hinting that doping P2 effectively improve the per-
formance of devices.
9 Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765–768.
Figure 6 shows the EL spectra of all LEDs at wavelength
from 643 to 649 nm and all devices show deep red emission,
which correspond to the intrinsic electroluminescence of DB,
indicating that these ELs are mainly originated from the DB
emission. That is, P2 mainly plays as a role to improve elec-
tron injection and transport in the device.
10 Lee, T.; Landis, C. A.; Dhar, B. M.; Jung, B. J.; Sun, J.; Sar-
jeant, A.; Lee, H.-J.; Katz, H. E. J Am Chem Soc 2009, 131,
1692–1705.
11 Zhang, X.-B.; Tang, B.-C.; Zhang, P.; Li, M.; Tian, W.-J.
J Mol Struct 2007, 846, 55–64.
12 Gong, X.; Yang, Y.; Xiao, S. J Phys Chem C 2009, 113,
7398–7404.
CONCLUSIONS
13 Lee, R.-H.; Hsu, H.-F.; Chan, L.-H.; Chen, C.-T. Polymer 2006,
A
series of oxadiazole-containing polyacetylene were
47, 7001–7012.
designed and characterized, and their properties were inves-
tigated. The incorporation of oxadiazole into PA with conju-
gated main chain has endowed resulting polymer with novel
electron affinity (or low LUMO energy level) and high ther-
14 Cha, S. W.; Choi, S.-H.; Kim, K.; Jin, J.-I. J Mater Chem
2003, 13, 1900–1904.
15 Sun, Y.-M. Polymer 2001, 43, 9495–9504.
ꢂ
mal properties (Td >330 C, 5% loss weight). Their thermal
16 Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Roth-
properties and electron affinity increases with the flexible
terminal alkoxyl chain length. The functional PAs directly
bearing oxadiazole (P2, ꢁ3.97 eV) possess better thermal
stability and lower LUMO energy level than that with a
spacer group (P4, ꢁ3.28 eV). P2 as ETM effectively improves
the performance of bilayer LEDs, ITO/PEDOT:PSS/PVK/
DB:P2/Ba/Al, which the external quantum efficiency (EQE)
and the maximum brightness of devices are enhanced, and
turn-on voltages decreases. The work may pave the way for
designing new ETM with high thermal stability and well
electron affinity.
berg, L. J. Science 1995, 267, 1969–1972.
17 Greczmiel, M.; Strohriegl, P.; Meier, M.; Brutting, W. Macro-
molecules 1997, 30, 6042–6046.
18 Lee, D. W.; Kwon, K. Y.; Jin, J. I.; Park, Y.; Kim, Y. R.;
Hwang, I. W. Chem Mater 2001, 13, 565–574.
19 Shirakawa, H. Angew Chem Int Ed 2001, 40, 2574–2580.
20 Lam, J. W. Y.; Dong, Y.; Kwok, H. S.; Tang, B. Z. Macromo-
lecules 2006, 39, 6997–7003.
21 Yin, S.; Xu, H.; Shi, W.; Gao, Y.; Song, Y.; Lam, J. W. Y.;
Tang, B. Z. Polymer 2005, 46, 7670–7677.
Financial support from the National Natural Science Fund of
China (Grant Nos. 90606011, 20974018 and 50472038), Ph.D.
Program Foundation of Ministry of Education of China (No.
20070255012), Shanghai Leading Academic Discipline Project
(No. B603) and Open Project of The State Key Laboratory of
Crystal Materials (KF0809), the Program of Introducing Talents
of Discipline to Universities (No. 111-2-04), Anhui Provincial
Natural Science Foundation (No. 090414190), and Anhui Pro-
vincial University Natural Science Foundation (No.
KJ2009A122).
22 Yin, S. C.; Xu, H.Y.; Su, X. Y.; Gao, Y.; Song, Y.L.; Lam, J.
W. Y.; Tang, B. Z.; Shi, W. Polymer 2005, 46, 10592–10600.
23 Yin, S. C.; Xu, H. Y.; Fang, M.; Shi, W. F.; Gao, Y. C.; Song,
Y. L. Macromol Chem Phys 2005, 206, 1549–1557.
24 Yin, S C.; Xu, H. Y.; Su, X. Y.; Li, G.; Song, Y. L.; Lam, J. W.
Y.; Tang, B.
2346–2357.
J Polym Sci Part A: Polym Chem 2006, 44,
25 Xu, H.Y.; Yin, S.C.; Zhu, W. J.; Song, Y.L.; Tang, B. Z. Poly-
mer 2006, 47, 6986–6992.
26 Tabata, M.; Tanaka, Y.; Sadahiro, Y.; Sone, T.; Yokota, K.;
Miura, I. Macromolecules 1997, 30, 5200–5204.
REFERENCES AND NOTES
27 Xu, H. Y.; Wang, X.; Wu, J. C. Chin Chem Lett 2008, 19,
1 Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.;
Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Science 1996,
273, 884–888.
141–145.
28 Lam, J. W. Y.; Tang, B. Z. Acc Chem Res 2005, 38,
745–754.
2 Ferna´ndez, J. E. Science 2007, 315, 1807–1810.
29 Lam, J. W. Y.; Tang, B. Z. J Polym Sci Part A: Polym Chem
3 Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.;
2003, 41, 2607–2629.
Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.;
30 Wang, X.; Wu, J. C.; Xu, H. Y.; Wang, P.; Tang, B. Z.
Bre´das, J. L.; Logulund, M.; Salaneck, W. R. Nature 1999, 397,
¨
J Polym Sci Part A: Polym Chem 2008, 46, 2072–2083.
121–128.
31 Wang, X.; Guang, S. Y.; Xu, H. Y.; Su, X. Y.; Yang, J. Y.;
Song, Y. L.; Lin, N. B.; Liu, X. Y. J Mater Chem 2008, 18,
4204–4209.
4 Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. Nature
1999, 397, 414–417.
5 Sung, H. H.; Lin, H. C. Macromolecules 2004, 37, 7945–7954.
32 Wang, X.; Shen, J.; Wu, J. C.; Fang, M.; Xu, H. Y. Chin
6 Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem
Chem Lett 2008, 19, 634–638.
Mater 2004, 16, 4556–4573.
33 Huang, J.; Li, C.; Xia, Y. J.; Zhu, X. H.; Peng, J.; Cao, Y.
7 Hughes, G.; Bryce, M. R. J Mater Chem 2005, 15, 94–107.
J Org Chem 2007, 72, 8580–8583.
OXADIAZOLE-CONTAINING POLYACETYLENES AS ETM, WANG ET AL.
1413