Journal of the American Chemical Society
Page 4 of 5
strands. E-DPPT in particular shows effectively defect free poly-
Supporting Information
mer domains where each strand is in a completely linear confor-
mation. In contrast N-DPPP and N-DPPT show typical coiled and
worm-like nanostructuring, characteristic of other polymers im-
aged by STM with numerous ‘hairpin’ like conformational de-
fects.22
1
2
3
4
5
6
7
The Supporting Information is available free of charge on the ACS
Publications
website.
Synthesis and characterization of polymers, crystallographic data
and additional theoretical calculations.
E-DPPP
E-DPPT
Accession Codes
8
9
CCDC 1565490 and 1565494 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
data_request@ccdc.cam.ac.uk, or by contacting The Cambridge
Crystallographic Data Centre, 12, Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
40nm
40nm
AUTHOR INFORMATION
Corresponding Author
N-DPPP
N-DPPT
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests.
40nm
40nm
ACKNOWLEDGMENT
This work was funded by EU project 679789 – 455 CONTREX.
This work was also supported by the EU H2020 ETN
SYNCHRONICS under grant agreement 643238. FC is a Royal So-
ciety Wolfson Research Merit Award holder.
Figure 3. STM images of conjugated polymers (E-DPPP: sample
bias (Vs) of -0.50 V with respect to the tip and a tunnelling current
of (It) of 5.0 pA; E-DPPT: Vs = -0.55 V, It = 5.0 pA; N-DPPP: Vs
= -0.85 V, It = 7.5 pA; N-DPPT: Vs = -0.70 V, It = 7.0 pA.)
REFERENCES
Given the similarity of the solution and thin film UV-Vis absorp-
tion spectra we believe that these encapsulated polymers therefore
have a general tendency to adopt highly linear conformations in
both solution and solid state. We believe that this increased order-
ing is from the 3-dimensional steric shielding effect from the en-
capsulating unit which prevents bending of the polymer backbone.
Disorder-free charge transport in conjugated polymers has recently
been observed but the synthetic guidelines for reducing energetic
disorder are not clear.23 Thus polymer encapsulation offers a novel
method for increasing backbone linearity in both solution and solid
state.
(1)
(2)
(3)
McQuade, D. T.; Kim, J.; Swager, T. M., J. Am. Chem. Soc.
2000, 122, 5885.
Hu, Z.; Willard, A. P.; Ono, R. J.; Bielawski, C. W.; Rossky, P.
J.; Vanden Bout, D. A., Nat. Commun. 2015, 6, 8246.
Harkin, D. J.; Broch, K.; Schreck, M.; Ceymann, H.; Stoy, A.;
Yong, C.-K.; Nikolka, M.; McCulloch, I.; Stingelin, N.; Lam-
bert, C.; Sirringhaus, H., Adv. Mater. 2016, 28, 6378.
Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus,
M.; Khan, M. S.; Raithby, P. R.; Köhler, A.; Friend, R. H., J.
Am. Chem. Soc. 2001, 123, 9412.
Zampetti, A.; Minotto, A.; Squeo, B. M.; Gregoriou, V. G.; Al-
lard, S.; Scherf, U.; Chochos, C. L.; Cacialli, F., Sci. Rep. 2017,
7, 1611.
Dimitrov, S. D.; Schroeder, B. C.; Nielsen, C. B.; Bronstein, H.;
Fei, Z.; McCulloch, I.; Heeney, M.; Durrant, J. R., Polymers
2016, 8, 14
(4)
(5)
(6)
In conclusion, we have synthesized a series of encapsulated conju-
gated diketopyrrolopyrrole polymers. These materials display ex-
tremely high fluorescence quantum yields in both solution and thin
film allowing this ubiquitous chromophore to be used, for the first
time, as an emissive material in the solid state. The encapsulated
polymers display much sharper emissive spectral features than their
naked counterparts demonstrating that both intra and intermolecu-
lar aggregation has been suppressed. Furthermore, the 3-dimen-
sional encapsulating steric shield promotes enhanced backbone co-
linearity resulting in sharper absorption features in both solution
and thin film. STM imaging of the encapsulated materials showed
remarkably linear, conformationally defect-free polymer domains.
Therefore, we believe that our encapsulated DPP polymers are
ideal candidates for many next generation optical and optoelec-
tronic applications where control of emission, aggregation and pol-
ymer conformation is key.
(7)
Pan, C.; Zhao, C.; Takeuchi, M.; Sugiyasu, K., Chemistry, Asian
J. 2015, 10, 1820.
(8)
Frampton, M. J.; Anderson, H. L., Angew. Chem. Int. Ed. 2007,
46, 1028.
(9)
Terao, J.; Tanaka, Y.; Tsuda, S.; Kambe, N.; Taniguchi, M.; Ka-
wai, T.; Saeki, A.; Seki, S., J. Am. Chem. Soc. 2009, 131, 18046.
Cacialli, F.; Wilson, J. S.; Michels, J. J.; Daniel, C.; Silva, C.;
Friend, R. H.; Severin, N.; Samorì, P.; Rabe, J. P.; O'Connell,
M. J.; Taylor, P. N.; Anderson, H. L., Nat. Mater. 2002, 1, 160.
Sugiyasu, K.; Honsho, Y.; Harrison, R. M.; Sato, A.; Yasuda,
T.; Seki, S.; Takeuchi, M., J. Am. Chem. Soc. 2010, 132, 14754.
Pan, C.; Sugiyasu, K.; Wakayama, Y.; Sato, A.; Takeuchi, M.,
Angew. Chem. Int. Ed. 2013, 52, 10775.
Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Dur-
rant, J. R.; Shakya Tuladhar, P.; Song, K.; Watkins, S. E.;
Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.;
Sirringhaus, H.; Heeney, M.; McCulloch, I., J. Am. Chem. Soc.
2011, 133, 3272.
(10)
(11)
(12)
(13)
ASSOCIATED CONTENT
ACS Paragon Plus Environment