C O M M U N I C A T I O N S
A. R. Acc. Chem. Res. 1988, 21, 81. (d) Mathey, F. Angew. Chem., Int.
Ed. 2003, 42, 1578. (e) Shah, S.; Protasiewicz, J. D. Coord. Chem. ReV.
2000, 210, 181. (f) Stephan, D. W. Angew. Chem., Int. Ed. 2000, 39, 314.
(g) Lammertsma, K. Top. Curr. Chem. 2003, 229, 95. (h) Mathey, F. Dalton
Trans. 2007, 1861. (i) Waterman, R. Dalton Trans. 2009, 18. (j) Dillon,
K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy: From
Organophosphorus to Phospha-organic Chemistry; Wiley: NY, 1998.
(3) (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed.
Engl. 1993, 32, 756. (b) Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc.
1995, 117, 11914.
(4) (a) Zhao, G.; Basuli, F.; Kilgore, U. J.; Fan, H.; Halikhedkar, A.; Huffman,
J. C.; Wu, G.; Mindiola, D. J. J. Am. Chem. Soc. 2006, 128, 13575. (b)
Masuda, J. D.; Hoskin, A. J.; Graham, T. W.; Beddie, C.; Fermin, M. C.;
Etkin, N.; Stephan, D. W. Chem.sEur. J. 2006, 12, 8696.
(5) (a) Scott, J.; Basuli, F.; Fout, A. R.; Huffman, J. C.; Mindiola, D. J. Angew.
Chem, Int. Ed. 2008, 47, 8502. (b) Scott, J.; Fan, H.; Wicker, B. F.; Fout,
A. R.; Baik, M.; Mindiola, D. J. J. Am. Chem. Soc. 2008, 130, 14438.
(6) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J. T.; Gates,
D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.
(7) See SI.
(8) (a) Tsuzuki, S.; Yosida, M.; Uchimaru, T.; Mikami, M. J. Phys. Chem. A
2001, 105, 769. (b) Amunugama, R.; Rodgers, M. T. J. Phys. Chem. A
2002, 106, 5529. (c) Amunugama, R.; Rodgers, M. T. J. Phys. Chem. A
2002, 106, 9092. (d) Amunugama, R.; Rodgers, M. T. Int. J. Mass Spectrom.
2003, 227, 339.
be isolated from the complicated metal-based mixture. As opposed to
complexes of the type Cp2ZrdP[Ar](P(CH3)3) (Ar ) Mes*3b or
DMP14), the reaction of highly ionic 3 with Mes*PCl2 cleanly yielded
the asymmetric diphosphene, [Mes*]PdP[DMP] (31P NMR: 526.2,
455.5 ppm),15 and (PNP)ScCl2 in yields greater than 70%, as
established by 31P NMR spectroscopy (Scheme 2).7 Since 3 fails to
react with phosphines, transfer and trapping experiments could be
pursued with this Lewis base. Hence, intermetal phosphinidene group
transfer can be conducted with 3, since treatment with 1 equiv of
Cp2ZrCl2 and excess P(CH3)3 rapidly promoted formation of (PNP)-
ScCl2 and the known complex, Cp2ZrdP[DMP](P(CH3)3) (31P NMR:
771.0 and -6.7 ppm, JP-P ) 23 Hz),14 an analogous effective
2
phosphinidene reagent to the Mes* derivative reported by Stephan3b
(Scheme 2). Unfortunately, decomposition products are observed in
the reaction mixture thus preventing separation of the Zr phosphinidene.
In contrast, the reaction with 2 equiv of Cp*2TiCl2 and excess P(CH3)3
resulted in quantitative formation of (PNP)ScCl2, the phospha-Wittig
reagent, [DMP]PdP(CH3)3 (31P NMR: -2.8 and -114.7 ppm, 1JP-P
) 582 Hz, 46%),16 as well as [DMP]PdP[DMP] (9%, 31P NMR: 493.2
ppm), (PNP)H (20%, 31P NMR: -12.7), H2P[DMP] (7%, 31P NMR:
-146.5), phosphaindole (5%, 31P NMR: -27.4 ppm), and traces of
another product (∼1%, dm, 31P NMR: -91.6 ppm, JH-P ) 205 Hz),
which has been tentatively assigned as the phosphinidene insertion
into the C-H bond of one of the mesityl methyl groups to make a
dihydrophosphanthridine.17 Although we have been unable to char-
acterize the titanium product produced from this reaction, we propose
the generation of phosphanylidene-σ4-phosphorane to occur via reduc-
tive coupling between a titanium phosphinidene (possibly a dimer)
and P(CH3)3.18,19 Our speculation is corroborated by the reaction of 3
with Cp2TiCl2 to rapidly form (PNP)ScCl2 as well as a metastable
complex we propose to be a titanium phosphinidene (31P NMR: 1065.3
ppm),4,18 which transforms to [DMP]PdP(CH3)3 and a new para-
magnetic titanium species.19 As observed with Cp*2TiCl2, complete
consumption of 3 can only be achieved when 2 equiv of Cp2TiCl2 are
used. The reaction mixture also reveals formation of the diphosphene
[DMP]PdP[DMP] (36%), (PNP)H (5%), H2P[DMP] (5%), dihydro-
phosphanthridine (∼1%), and another unidentified product (9%).17 To
our knowledge, the transfer of a PAr unit directly to a phosphine is a
rare phenomenon20,21 therefore rendering complex 3 a powerful
delivery vehicle, presumably due to the polarized nature of the Sc-P
bond as well as the nonredox behavior of the Sc(III) ion.
(9) (a) Hardman, N. J.; Twamley, B.; Stender, M.; Baldwin, R.; Hino, S.;
Schiemenz, B.; Kauzlarich, S. M.; Power, P. P. J. Organomet. Chem. 2002,
643-644, 461. (b) Wehaschulte, R. J.; Power, P. P. J. Am. Chem. Soc.
1997, 119, 2847.
(10) Zschunke, A.; Riemer, M.; Schmidt, H.; Issleib, K. Phosphorus and Sulphur
1983, 17, 237.
(11) Some representative Sc(III)sBr distances (2.58-2.8 Å): (a) Neculai, A. M.;
Neculai, M.; Nikifarov, G. B.; Roesky, H. W.; Schicker, C.; Herbst-Irmer, R.;
Magull, J.; Noltemeyer, M. Eur. J. Inorg. Chem. 2003, 3120. (b) Neculai,
A. M.; Neculai, M.; Roesky, H. W.; Magull, J.; Baldus, M.; Andronesi, O.;
Jansen, M. Organometallics 2002, 21, 2590. (c) Ishikawa, S.; Hamada, T.;
Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 12236. (d) Hill,
N. J.; Levason, W.; Popham, M. C.; Reid, G.; Webster, M. Polyhedron 2002,
25, 1579. (e) Lu, K.; Cui, D. Organometallics 2009, 5438.
(12) (a) Neumann, F.; Hampel, F.; Schleyer, P. V. R. Inorg. Chem. 1995, 34,
6553. (b) Spring, D. R.; Krishnan, S.; Blackwell, H. E.; Schreiber, S. L.
J. Am. Chem. Soc. 2002, 124, 1354.
(13) A molecular structure of the phosphaalkene is reported in the SI.
(14) Urnezius, E.; Lam, K.-C.; Rheingold, A. L.; Protasiewicz, J. D. J.
Organomet. Chem. 2001, 630, 193.
(15) Smith, R. C.; Urnzius, E.; Lan, K.-C.; Rheingold, A. L.; Protasiewicz, J. D.
Inorg. Chem. 2002, 41, 5296.
(16) Shah, S.; Protasiewicz, J. D. Chem. Commun. 1998, 1585.
(17) Phospha-Wittig reagents are known to decompose to the diphosphinene
and can often form the corresponding primary phosphine, phosphaindole,
and/or dihydrophosphanthridine. (a) Urnezius, E.; Klippenstein, S. J.;
Protasiewicz, J. D. Inorg. Chem. Acta 2000, 297, 181. (b) Shah, S.; Simpson,
M. C.; Smith, R. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 2001, 123,
6925–6926. (c) Champion, D. H.; Cowley, A. H. Polyhedron 1985, 4, 1791.
(d) Amor, I.; Garcia, M. E.; Ruiz, M. A.; Saez, D.; Hamidov, H.; Jeffery,
J. C. Organometallics 2006, 25, 4897. Although the dihydrophosphanthri-
dine has not been characterized, a similar phospha-indole formed by
t
insertion of the phosphene into the CsH bond of a Bu group on a Mes*
ring has been reported with a similar chemical shift (dm,-78.4, JHsP
)
Other intermetal PAr transfer studies as well as current efforts
to remove the Li+ are underway in our laboratories. Complexes
such as 3 can deliver the PAr unit to common metal-halide
precursors, therefore rendering them even more powerful than
prototypical phospha-Wittig reagents such as ArPdP(CH3)3,16,22
or even early transition metal phosphinidene complexes such as
Cp2ZrdP[Ar](P(CH3)3).2,3b,14
182 Hz): (e) Bo¨hm, V. P. W.; Brookhart, M. Angew. Chem., Int. Ed. 2001,
40, 4694. (f) Stradiotto, M.; Fujdala, K. L.; Tilley, T. D. HelV. Chim. Acta
2001, 84, 2958.
(18) Titanium phosphinidenes, although rare, have been reported in the literature.
(a) Basuli, F.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. J. Am.
Chem. Soc. 2003, 125, 10170. (b) Basuli, F.; Watson, L. A.; Huffman,
J. C.; Mindiola, D. J. Dalton Trans. 2003, 4228.
(19) 1H and 31P NMR spectra of the mixture do not suggest formation of the
Ti(II) complexes Cp2Ti(P(CH3)3)2 or [Cp2Ti(P(CH3)3)](µ2-N2) but, instead,
the known Ti(III) complex Cp2Ti(P(CH3)3)Cl (1H NMR: 34.1 ppm, ∆ν1/2
) 3210 Hz; 0.31 ppm, ∆ν1/2 ) 100 Hz). (a) Hao, L.; Harrod, J. F. Inorg.
Chem. 1999, 2, 191. (b) Kool, L. B.; Rausch, M. D.; Ah, H. G.; Herberhold,
M.; Thewalt, U.; Wolf, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 400. (c)
Berry, D. H.; Procopio, L. J.; Carroll, P. J. Organometallics 1988, 7, 570.
Cp*2TiCl and Cp2Ti(P(CH3)3)Cl were synthesized according to literature
procedures and 1H NMR spectra were compared with our mixtures which
suggest these species to be likely products formed in the reaction. (d)
Pattiasina, J. W.; Heeres, H. J.; Van Bolhuis, F.; Meetsma, A.; Teuben,
J. H.; Spek, A. L. Organometallics 1987, 6, 2004. (e) Hao, L.; Harrod,
J. F. Inorg. Chem. 1999, 2, 191.
Acknowledgment. Financial support of this research was
provided by the National Science Foundation (CHE-0848248). J.S.
acknowledges postdoctoral financial support from NSERC. We also
thank Prof. John D. Protasiewicz for insightful discussions.
Supporting Information Available: Experimental procedures, X-ray
crystallographic information and spectral data are provided. This
(20) Reversible transfer of a phosphinidene (PSiiPr3) to PPh3 has been documented.
Piro, N. A.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 8764.
(21) Urnezius, E.; Shah, S.; Protasiewicz, J. D. Phosphorus, Sulfur 1999, 137.
(22) Kilgore, U. J.; Fan, H.; Pink, M.; Urnezius, E.; Protasiewicz, J. D.; Mindiola,
D. J. Chem. Commun. 2009, 4521.
References
(1) Giesbrecht, G. R.; Gordon, J. C. Dalton Trans. 2004, 2387.
(2) (a) Lammertsma, K.; Vlaar, M. J. M. Eur. J. Org. Chem. 2002, 1127. (b)
Cowley, A. H.Acc. Chem. Res. 1997, 30, 445. (c) Cowley, A. H.; Barron,
JA100214E
9
J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010 3693