C O M M U N I C A T I O N S
Scheme 2. Proposed Mechanism for Biaryl Synthesis Starting from
compound 14, the cross-coupling was repeated to give linear terphenyl
15, which could be further functionalized to yield longer linear
polyphenyls.10
Aryl Carboxylatesa
In summary, we developed a new class of homogeneous Ni-based
catalysis to construct biaryl scaffolds by activation of aryl carboxylates
with aryl boroxines. Our observation not only offers a new synthetic
tool for constructing C-C bonds from simple aryl esters for the
synthesis of industrially and medicinally important biaryl molecules
but also shows the power of transition metal mediated catalysis to
manipulate traditionally “inert” bonds. Aryl esters may be applied to
other cross-couplings based on the results shown here.
Acknowledgment. Support of this work by a starter grant from
Peking University, the grant from National Sciences of Foundation of
China (No. 20542001, 20521202) and National Basic Research
Program of China (973 Program 2009CB825300). We also thank Profs.
Hisashi Yamamoto and Chuan He at the University of Chicago for
constructive discussions.
a L can be phosphine.
Supporting Information Available: Experimental details, spectral
data. This material is available free of charge via the Internet at http://
pubs.acs.org.
Scheme 3. Application of Cross Coupling via Ni-Catalyzation
between Aryl Carboxylates and Arylboroxines
References
(1) (a) Blakeney, J. S.; Reid, R. C.; Le, G. T.; Fairlie, D. P. Chem. ReV. 2007,
107, 2960–3041. (b) Nagarajan, R.; Merkel, K. E.; Michel, K. H.; Higgins,
H. M.; Hoehn, M. M.; Hunt, A. H.; Jones, N. D.; Occolowitz, J. L.; Schabel,
A. A.; Swartzendruber, J. K. J. Am. Chem. Soc. 1988, 110, 7896–7897. (c)
Boyd, M. R.; Hallock, Y. F.; Cardellina, J. H.; Manfredi, K. P.; Blunt,
J. W.; McMahon, J. B.; Buckheit, R. W.; Bringmann, G.; Scha¨ffer, M.;
Cragg, G. M.; Thomas, D. W.; Jato, J. G. J. Med. Chem. 1994, 37, 1740–
1745. (d) Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar,
D. J. J. Am. Chem. Soc. 1997, 119, 6072–6094.
(2) (a) Diederich, F., Stang, P. J., Eds. Metal-catalyzed cross-coupling reactions;
Wiley-VCH: Weinheim, 1998. (b) Miyaura, N.; Suzuki, A. Chem. ReV.
1995, 95, 2457–2483. (c) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007,
40, 275–286. (d) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. ReV. 2002, 102, 1359–1470.
(3) More than 6000 publications and patents were found by simple Scifinder
search by May, 2008.
(4) (a) Bo¨hm, V. P. W.; Weskamp, T.; Gsto¨ttmayr, C. W. K.; Herrmann, W. A.
Angew. Chem., Int. Ed. 2000, 39, 1602–1604. (b) Herrmann, W. A.; Elison,
M.; fischer, J.; Ko¨cher, C. G.; Artus, R. J. Angew. Chem., Int. Ed. 1995, 34,
2371–2374. (c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
1998, 120, 9722–9723. (d) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc.
1999, 121, 1473–1478. (e) Furstner, A.; Leitner, A. Synlett 2001, 290–292.
(f) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211.
(5) (a) Fuerstner, A.; Martin, R. Chem. Lett. 2005, 34, 624–629. (b) Bolm, C.;
Legros, J.; LePaih, J.; Zani, L. Chem. ReV. 2004, 104, 6217–6254. (c)
Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317–
3321. (d) Hirohisa, O.; Hideki, Y.; Koichiro, O. J. Am. Chem. Soc. 2006,
128, 1886–1889. (e) Tamaru, Y., Ed. Modern Organonickel Chemistry;
Wiley-VCH: 2006. (f) Krause, N., Ed. Modern Organocopper Chemistry;
Wiley-VCH: 2002.
(6) Price from Alfa Aesar: 2-Bromonnaphthalene (98%, $802 for 100 g);
2-chloronaphthalene is not commercial available; 2-naphthyl acetate (99%,
$582 for 250 g); starting material for 2-naphthyl acetate: 2-naphthol (>98%,
$262 for 5 kg) and acetic anhydride: (>99%, $105 for 2.5 kg).
(7) (a) Tsuji, J. Palladium reagents and catalysts; John Wiley & Sons:
Chichester, 2004. (b) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103,
2921–2944.
Information, Figure S1), which further underwent oxidative addition
by aryl carboxylates to afford a key intermediate 5. After the
dissociation of PCy3, the transmetalation between aryl boroxine and
Ni complexes took place to produce key intermediate 6, which may
be promoted by both base and water. Reductive elimination facilitated
the catalytic cycle by regenerating Ni(0) as a catalytic active species,
and the desired biaryl was produced. Further studies to clearly
understand this reaction pathway is underway.
To further explore the application of this methodology, we applied
our method to constructing complicated organic scaffolds (Scheme
3). Starting from a natural product Estrone 9,13 the aryl group was
introduced to afford the final product 10 through the newly developed
coupling. This illustrated a straightforward way to modify the natural
product. Furthermore, starting from 6-aceto-2-naphthyl acetate 11, a
phenyl group was introduced into 3j through this new coupling. After
Baeyer-Villiger oxidation to afford acetate 12, our cross coupling was
applied once again to construct the biaryl scaffold, giving 3q. The
new method also provided an efficient manner of accessing linear
polyphenyls, which were broadly used in the materials field. From
readily available 4-acetophenyl pivalate 13, the new cross-coupling
led to the corresponding substituted biphenyl 4g. After the sequence
of Baeyer-Villiger oxidation, hydration and pivalation to produce
(8) (a) Alexander, Z. Angew. Chem., Int. Ed. 2003, 42, 5394–5399. (b)
Yamamoto, T.; Ishizu, J.; Kohara, T.; Komiya, S.; Yamamoto, A. J. Am.
Chem. Soc. 1980, 102, 3758–3764.
(9) Tobisu, M.; shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47,
4866–4869.
(10) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979,
101, 2246–2247. (b) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli,
M. J. Org. Chem. 1984, 49, 4894–4899. (c) Dankwardt, J. W. Angew. Chem.,
Int. Ed. 2004, 43, 2428–2432. (d) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun,
Z.-P.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 2008,
1437–1439. (e) Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z. -P.; Wang,
Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268–3269.
(11) Grotjahn, D. B.; Joubran, C. Organometallics 1995, 14, 5171–5177.
(12) Jennings, W. G. Chemistry and Physiology of FlaVors; Schultz, H., Day,
E., Libbey, L., Eds.; AVI: Westport, CT, 1967.
(13) Zeelen, F. J. Nat. Prod. Rep. 1994, 11, 607–612.
JA8056503
9
14470 J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008