Journal of Medicinal Chemistry
ARTICLE
HRP, horseradish peroxidase; HEK-293, human embryonic kid-
ney 293; DMEM, Dulbecco’s Modified Eagle Medium; FCS, fetal
calf serum; CCD, charge-coupled device; TLC, thin layer chroma-
tography; DMF, dimethylformamide; EDC, 1-ethyl-3-(3-dimethyla-
minopropyl)carbodiimide; HOBt, hydroxybenzotriazole; DMAP, 4-
dimethylaminopyridine; TEA, triethylamine; TFA, trifluoroacetic acid.
(13) Lunn, M. R.; Stockwell, B. R. Chemical genetics and orphan
genetic diseases. Chem. Biol. 2005, 12, 1063–1073.
(14) Chang, J.-G.; Hsieh-Li, H.-M.; Jong, Y.-J.; Wang, N. M.; Tsai,
C.-H.; Li, H. Treatment of spinal muscular atrophy by sodium butyrate.
Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 9808–9813.
(15) Andreassi, C.; Angelozzi, C.; Tiziano, F. D.; Vitali, T.; Vincenzi,
E. D.; Boninsegna, A.; Villanova, M.; Bertini, E.; Pini, A.; Neri, G.; Brahe,
C. Phenylbutyrate increases SMN expression in vitro: relevance for
treatment of spinal muscular atrophy. Eur. J. Hum. Genet. 2004, 12,
59–65.
’ REFERENCES
(16) Grzeschik, S. M.; Ganta, M.; Prior, T. W.; Heavlin, W. D.;
Wang, C. H. Hydroxyurea enhances SMN2 gene expression in spinal
muscular atrophy cells. Ann. Neurol. 2005, 58, 194–202.
(1) (a) Roberts, D. F.; Chavez, J.; Court, S. D. The genetic
component in child mortality. Arch. Dis. Child. 1970, 45, 33–38.
(b) Crawford, T. O.; Pardo, C. A. The neurobiology of childhood spinal
muscular atrophy. Neurobiol. Dis. 1996, 3, 97–110.
(2) Pearn, J. Incidence, prevalence, and gene frequency studies
of chronic childhood spinal muscular atrophy. J. Med. Genet. 1978, 15,
409–413.
(17) Wirth, B.; Riessland, M.; Hahnen, E. Drug discovery for spinal
muscular atrophy. Expert Opin. Drug Discovery 2007, 2, 437–451.
(18) (a) Brichta, L.; Hofmann, Y.; Hahnen, E.; Siebzehnrubl, F. A.;
Raschke, H.; Blumcke, I.; Eyupoglu, I. Y.; Wirth, B. Valproic acid
increases the SMN2 protein level: a well-known drug as a potential
therapy for spinal muscular atrophy. Hum. Mol. Genet. 2003,
12, 2481–2489. (b) Sumner, C. J.; Huynh, T. N.; Markowitz, J. A.;
Perhac, J. S.; Hill, B.; Coovert, D. D.; Schussler, K.; Chen, X.; Jarecki, J.;
Burghes, A. H. M.; Taylor, J. P.; Fischbeck, K. H. Valproic acid increases
SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 2003,
54, 647–654.
atrophies. Lancet 1980, 1, 919–922.
(4) Lefebvre, S.; Burglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.;
Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; Le
Paslier, D.; Frezal, J.; Cohen, D.; Weissenbach, J.; Munnich, A.; Melki, J.
Identification and characterization of a spinal muscular atrophy-deter-
mining gene. Cell 1995, 80, 155–165.
(19) Andreassi, C.; Jarecki, J.; Zhou, J.; Coovert, D. D.; Monani,
U. R.; Chen, X.; Whitney, M.; Pollok, B.; Zhang, M.; Androphy, E. J.;
Burghes, A. H. M. Aclarubicin treatment restores SMN levels to cells
derived from type I spinal muscular atrophy patients. Hum. Mol. Genet.
2001, 10, 2841–2849.
(20) Wolstencroft, E. C.; Mattis, V.; Bajer, A. A.; Young, P. J.;
Lorson, C. L. A non-sequence-specific requirement for SMN protein
activity: the role of aminoglycosides in inducing elevated SMN protein
levels. Hum. Mol. Genet. 2005, 14, 1199–1210.
(21) Avila, A. M.; Burnett, B. G.; Taye, A. A.; Gabanella, F.; Knight,
M. A.; Hartenstein, P.; Cizman, Z.; Di Prospero, N. A.; Pellizzoni, L.;
Fischbeck, K. H.; Sumner, C. J. Trichostatin A increases SMN expression
and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest.
2007, 117, 659–671.
(22) (a) Hahnen, E.; Eyupoglu, I. Y.; Brichta, L.; Haastert, K.;
Trankle, C.; Siebzehnrubl, F. A.; Riessland, M.; Holker, I.; Claus, P.;
Romstock, J.; Buslei, R.; Wirth, B.; Blumcke, I. In vitro and ex vivo
evaluation of second-generation histone deacetylase inhibitors for the
treatment of spinal muscular atrophy. J. Neurochem. 2006, 98, 193–202.
(b) Riessland, M.; Ackermann, B.; Forster, A.; Jakubik, M.; Hauke, J.;
Garbes, L.; Fritzsche, I.; Mende, Y.; Blumcke, I.; Hahnen, E.; Wirth, B.
SAHA ameliorates the SMA phenotype in two mouse models for spinal
muscular atrophy. Hum. Mol. Genet. 2010, 19, 1492–1506.
(23) Yuo, C.-Y.; Lin, H.-H.; Chang, Y.-S.; Yang, W.-K.; Chang, J.-G.
5-(N-Ethyl-N-isopropyl)-amiloride enhances SMN2 exon 7 inclusion
and protein expression in spinal muscular atrophy cells. Ann. Neurol.
2008, 63, 26–34.
(24) Garbes, L.; Riessland, M.; Ho€lker, I.; Heller, R.; Hauke, J.;
Tr€ankle, C.; Coras, R.; Bl€umcke, I.; Hahnen, E.; Wirth, B. LBH589
induces up to 10-fold SMN protein levels by several independent
mechanisms and is effective even in cells from SMA patients nonre-
sponsive to valproate. Hum. Mol. Genet. 2009, 18, 3645–3658.
(25) Dayangac-Erden, D.; Bora, G.; Ayhan, P.; Kocaefe, C.; Dalkara,
S.; Yelekci, K.; Demir, A. S.; Erdem-Yurter, H. Histone deacetylase
inhibition activity and molecular docking of (E)-Resveratrol: its ther-
apeutic potential in spinal muscular atrophy. Chem. Biol. Drug Des. 2009,
73, 355–364.
(5) Lefebvre, S.; Burlet, P.; Liu, Q.; Bertrandy, S.; Clermont, O.;
Munnich, A.; Dreyfuss, G.; Melki, J. Correlation between severity and
SMN protein level in spinal muscular atrophy. Nature Genet. 1997,
16, 265–269.
(6) (a) Lorson, C. L.; Hahnen, E.; Androphy, E. J.; Wirth, B. A single
nucleotide in the SMN gene regulates splicing and is responsible for
spinal muscular atrophy. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 6307–6311. (b) Monani, U. R.; Lorson, C. L.; Parsons, D. W.; Prior,
T. W.; Androphy, E. J.; Burghes, A. H. M.; McPherson, J. D. A single
nucleotide difference that alters splicing patterns distinguishes the SMA
gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 1999, 8, 1177–
1183.
(7) Lorson, C. L.; Strasswimmer, J.; Yao, J. M.; Baleja, J. D.; Hahnen,
E.; Wirth, B.; Le, T. T.; Burghes, A. H. M.; Androphy, E. J. SMN
oligomerization defect correlates with spinal muscular atrophy severity.
Nature Genet. 1998, 19, 63–66.
(8) (a) Feldkotter, M.; Schwarzer, V.; Wirth, R.; Wienker, T. F.;
Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time
light Cycler PCR: fast and highly reliable carrier testing and prediction of
severity of spinal muscular atrophy. Am. J. Hum. Genet. 2002, 70, 358–
368. (b) McAndrew, P. E.; Parsons, D. W.; Simard, L. R.; Rochette, C.;
Ray, P. N.; Mendell, J. R.; Prior, T. W.; Burghes, A. H. M. Identification
of proximal spinal muscular atrophy carriers and patients by analysis of
SMNT and SMNC gene copy number. Am. J. Hum. Genet. 1997, 60,
1411–1422.
(9) Pellizzoni, L.; Baccon, J.; Charroux, B.; Dreyfuss, G. The survival
of motor neurons (SMN) protein interacts with the snoRNP proteins
fibrillarin and GAR1. Curr. Biol. 2001, 11, 1079–1088.
(10) Foust, K. D.; Wang, X.; McGovern, V. L.; Braun, L.; Bevan,
A. K.; Haidet, A. M.; Le, T. T.; Morales, P. R.; Rich, M. M.; Burghes,
A. H. M.; Kaspar, B. K. Rescue of the spinal muscular atrophy phenotype
in a mouse model by early postnatal delivery of SMN. Nature Biotechnol.
2010, 28, 271–274.
(11) (a) Hua, Y.; Sahashi, K.; Hung, G.; Rigo, F.; Passini, M. A.;
Bennett, C. F.; Krainer, A. R. Antisense correction of SMN2 splicing in
the CNS rescues necrosis in a type III SMA mouse model. Genes Dev.
2010, 24, 1634–1644. (b) Aartsma-Rus, A.; van Ommen, G.-J. B.
Progress in therapeutic antisense applications for neuromuscular dis-
orders. Eur. J. Hum. Genet. 2010, 18, 146–153.
(12) Deshpande, D. M.; Kim, Y. S.; Martinez, T.; Carmen, J.; Dike,
S.; Shats, I.; Rubin, L. L.; Drummond, J.; Krishnan, C.; Hoke, A.;
Maragakis, N.; Shefner, J.; Rothstein, J. D.; Kerr, D. A. Recovery from
paralysis in adult rats using embryonic stem cells. Ann. Neurol. 2006,
60, 32–44.
(26) Lunn, M. R.; Root, D. E.; Martino, A. M.; Flaherty, S. P.; Kelley,
B. P.; Coovert, D. D.; Burghes, A. H. M.; thi Man, N.; Morris, G. E.;
Zhou, J.; Androphy, E. J.; Sumner, C. J.; Stockwell, B. R. Indoprofen
upregulates the survival motor neuron protein through a cyclooxygen-
ase-independent mechanism. Chem. Biol. 2004, 11, 1489–1493.
(27) Hastings, M. L.; Berniac, J.; Liu, Y. H.; Abato, P.; Jodelka, F. M.;
Barthel, L.; Kumar, S.; Dudley, C.; Nelson, M.; Larson, K.; Edmonds, J.;
6232
dx.doi.org/10.1021/jm200497t |J. Med. Chem. 2011, 54, 6215–6233