C O M M U N I C A T I O N S
loadings and highlights heterogenization as a strategy for site-
isolation of reactive, monomeric species.
We have synthesized and characterized a series of mesoporous
silica materials (SBA-15-N3-x) with controlled, randomly distributed
azide loadings for quantitative click modification. Given the
simplicity and predictability of these material preparations, we
anticipate the materials will be widely adopted in applications
needing to heterogenize homogeneous chemistry.
Acknowledgment. This work was financially supported in part
by NIH (Grant GM70050730) and the Stanford Global Climate and
Energy Project (GCEP). J.N. acknowledges a JSPS Research
Fellowship. We thank Dr. G. Li, Dr. A. Vailionis, Mr. L. D. Lowe,
Jr., and Dr. S. Lynch at Stanford University for the ICP, XRD,
fluorescence, and solid NMR measurements, respectively.
Figure 2. Fluorescence spectra of SBA-15-pyrene-x (x ) 0.2, 0.5, 1, 2, 3,
4, 8 mol %) suspended in CHCl3 (λex ) 330 nm). For comparison the spectra
were normalized at 415 nm.
Scheme 2. Dioxygen Adducts of [CuITPA]1+
Supporting Information Available: Sample preparation and char-
acterization of SBA-15 materials. This material is available free of
References
(1) (a) Sanchez, C.; Julia´n, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005,
15, 3559. (b) De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem.
ReV. 2002, 102, 3615. (c) Schlossbauer, A.; Schaffert, D.; Kecht, J.; Wagner,
E.; Bein, T. J. Am. Chem. Soc. 2008, 130, 12558.
(2) (a) Terry, T. J.; Dubois, G.; Murphy, A.; Stack, T. D. P. Angew. Chem.,
Int. Ed. 2007, 46, 945. (b) Terry, T. J.; Stack, T. D. P. J. Am. Chem. Soc.
2008, 130, 4945. (c) Grigoropoulou, G.; Christoforidis, K. C.; Louloudi,
M.; Deligiannakis, Y. Langmuir 2007, 23, 10407.
(3) Azide materials: (a) Guo, Z.; Lei, A.; Liang, X.; Xu, Q. Chem. Commun.
2006, 4512. (b) Ortega-Mun˜oz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo,
F.; Santoyo-Gonzalez, F. AdV. Synth. Catal. 2006, 348, 2410. (c) Collman,
J. P.; Devaraj, N. K.; Eberspacher, T. P. A.; Chidsey, C. E. D. Langmur
2006, 22, 2457.
(4) Hoffmann, F.; Cornelius, M.; Morell, J.; Fro¨ba, M. Angew. Chem., Int.
Ed. 2006, 45, 3216.
(5) (a) Rostovtesv, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596. (b) Rodionov, V. O.; Presolski, S. I.; D´ıaz,
D. D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705.
(6) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka,
B. F.; Stucky, G. D. Science 1998, 279, 548.
(7) After grafting: (a) Hicks, J. C.; Jones, C. W. Langmuir 2006, 22, 2676. (b)
Hicks, J. C.; Dabestani, R.; Buchanan, A. C., III; Jones, C. W. Chem. Mater.
2006, 18, 5022. (c) Cheng, K.; Landry, C. C. J. Am. Chem. Soc. 2007,
129, 9674.
predominant monomer fluorescence. The correlation of the decrease
of the Imono/Iexc ratio with loading is also consistent with a
cumulative density function for randomly distributed objects.8 These
data suggest that the pyrene and thus the original organoazide
distribution is random and that site-isolation of similarly sized metal
complexes will be achieved at loadings in the 0.03 mmol g-1 range
or less.8
Oxygenation of [CuITPA]1+ in a homogeneous propionitrile
(EtCN) solution at -90 °C generates a green monomeric superoxide
complex initially, which rapidly reacts with a second equivalent of
[CuI(TPA)]+ to form a purple dimeric peroxo complex (Scheme
2).8,15 This rapid dimerization precludes any investigation of the
superoxide species reactivity. Site-isolation of [CuITPA]1+ allows
the formation of this mononuclear species; SBA-15-TPA-0.5, loaded
with 0.9 equiv of [CuI(MeCN)4](SbF6) per TPA ligand, turns
brilliant green upon oxygenation at -90 °C in EtCN. The more
densely loaded material, SBA-15-TPA-4, oxygenates to form a
purple material. These color changes are consistent with the
homogeneous chemistry. Unfortunately, the instability of both
complexes at -90 °C precludes reactivity studies and suggests that
passivation of the silica surface may be needed. These initial results
indicate, however, that sensitive metal-based homogeneous chem-
istry can be translated efficiently into mesoporous silicas at variable
(8) See Supporting Information.
(9) Brunel, D.; Cauvel, A.; Di Renzo, F.; Fajula, F.; Fubini, B.; Onida, B.;
Garrone, E. New J. Chem. 2000, 24, 807.
(10) Direct synthesis: (a) Alauzun, J.; Mehdi, A.; Reye´, C.; Corriu, R. New
J. Chem. 2007, 31, 911. (b) Margolese, D.; Melero, J. A.; Christiansen,
S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448.
(11) Morey, M. S.; O’Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000,
12, 898.
(12) SBA-15-Fc-x: Sodium ascorbate (25 µmol/0.5 mL H2O) was added to a
mixture of SBA-15-N3-x (100 mg), ethynyl-ferrocene (100 µmol), CuSO4
(10 µmol), and TPA (10 µmol) in dimethylformamide (5 mL) and stirred
for 24 h under N2. The silica was filtered and extensively washed with a
0.1 M Et2NCS2Na/MeOH and sodium acetate/MeOH.
(13) By contrast, the azide signal of a traditionally grafted SBA-15-N3 (0.1 mmol
g-1) effectively disappears (>95%) upon the reaction with 1-ethynl-pyrene.
(14) (a) Francis, C.; Lin, J.; Singer, L. A. Chem. Phys. Lett. 1983, 94, 162. (b)
Lochmu¨ller, C. H.; Colborn, A. S.; Hunnicutt, M. L.; Harris, J. M. Anal.
Chem. 1983, 55, 1344.
(15) (a) Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.-I.; Neuhold, Y.-M.;
Karlin, K. D.; Zuberbu¨hler, A. D. Inorg. Chem. 2003, 42, 1807. (b) Maiti,
D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E. I.; Karlin, K. D.
J. Am. Chem. Soc. 2007, 127, 264.
JA804237B
9
VOL. 130, NO. 44, 2008 14361