V. Poláčková et al./Chemical Papers 65 (3) 338–344 (2011)
343
tetraphenylborate and arylboronic acids. The Journal of Or-
ganic Chemistry, 60, 883–888. DOI: 10.1021/jo00109a019.
Comins, D. L., Brooks, C. A., & Ingalls, C. L. (2001). Reduction
of N-acyl-2,3-dihydro-4-pyridones to N-acyl-4-piperidones
using zinc/acetic acid. The Journal Organic Chemistry, 66,
2181–2182. DOI: 10.1021/jo001609l.
Fujio, M., Tanaka, M., Wu, X.-M., Funakoshi, K., Sakai,
K., & Suemune, H. (1998). ortho-Halogeno substituents ef-
fect in asymmetric cyclization of 4-aryl-4-pentenals using
a rhodium catalyst. Chemistry Letters, 27, 881–882. DOI:
10.1246/cl.1998.881.
to α,β-unsaturated carbonyl compounds. Helvetica Chimica
Acta, 91, 1947–1953. DOI: 10.1002/hlca.200890208.
Kappe, C. O. (2004). Controlled microwave heating in modern
organic synthesis. Angewandte Chemie International Edi-
tion, 43, 6250–6284. DOI: 10.1002/anie.200400655.
Kappe, C. O., & Dallinger, D. (2009). Controlled microwave
heating in modern organic synthesis: highlights from the
2004–2008 literature. Molecular Diversity, 13, 71–193. DOI:
10.1007/s11030-009-9138-8.
Kappe, C. O., Dallinger, D., & Murphree, S. S. (2009). Practical
microwave synthesis for organic chemists: Strategies, instru-
ments, and protocols. Weinheim, Germany: Wiley–VCH.
Kappe, C. O., & Stadler, A. (2005). Microwaves in organic
and medicinal chemistry (Series: Methods and principles in
medicinal chemistry, Vol. 25). Weinheim, Germany: Wiley–
VCH.
Gavande, N., Johnston, G. A. R., Hanrahan, J. R.,
&
Chebib, M. (2010). Microwave-enhanced synthesis of 2,3,6-
trisubstituted pyridazines: application to four-step synthesis
of gabazine (SR-95531). Organic and Biomolecular Chem-
istry, 8, 4131–4136. DOI: 10.1039/C0OB00004C.
Genov, M., Almorín, A., & Espinet, P. (2007). Microwave
assisted asymmetric Suzuki-Miyaura and Negishi cross-
coupling reactions: synthesis of chiral binaphthalenes. Tetra-
hedron: Asymmetry, 18, 625–627. DOI: 10.1016/j.tetasy.
2007.03.001.
Kováčová, S., Kováčiková, L., Lácová, M., Boháč, A., & Sal-
išová, M. (2010). Microwave assisted one pot synthesis of
7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as pre-
cursors of new anti-tumour compounds. Chemical Papers,
64, 806–811. DOI: 10.2478/s11696-010-0059-x.
Genov, M., Almorín, A., & Espinet, P. (2006). Efficient synthe-
sis of chiral 1,1ꢀ-binaphthalenes by the asymmetric Suzuki–
Miyaura reaction: Dramatic synthetic improvement by sim-
ple purification of naphthylboronic acids. Chemistry – A Eu-
ropean Journal, 12, 9346–9352. DOI: 10.1002/chem.200600
616.
Genov, M., Salas, G., & Espinet, P. (2008). Effect of microwave
heating in the asymmetric addition of dimethylzinc to alde-
hydes. Journal of Organometallic Chemistry, 693, 2017–
2020. DOI: 10.1016/j.jorganchem.2008.03.003.
Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwave-
accelerated homogeneous catalysis in organic chemistry. Ac-
counts of Chemical Research, 35, 717–727. DOI: 10.1021/
ar010074v.
Lin, S., & Lu, X. (2006). Palladium–bipyridine catalyzed con-
jugate addition of arylboronic acids to α,β-unsaturated car-
bonyl compounds in aqueous media. Tetrahedron Letters, 47,
7167–7170. DOI: 10.1016/j.tetlet.2006.07.154.
Lu, X., & Lin, S. (2005). Pd(II)-bipyridine catalyzed conju-
gate addition of arylboronic acid to α,β-unsaturated car-
bonyl compounds. The Journal of Organic Chemistry, 70,
9651–9653. DOI: 10.1021/jo051561h.
Mariz, R., Luan, X., Gatti, M., Linden, A., & Dorta, R. (2008).
A chiral bis-sulfoxide ligand in late-transition metal catal-
ysis; rhodium-catalyzed asymmetric addition of arylboronic
acids to electron-deficient olefins. Journal of the American
Chemical Society, 130, 2172–2173. DOI: 10.1021/ja710665q.
Nishikata, T., Yamamoto, Y., & Miyaura, N. (2004). 1,4-
Addition of arylboronic acids and arylsiloxanes to α,β-
unsaturated carbonyl compounds via transmetalation to di-
cationic palladium(II) complexes. Organometallics, 23, 4317–
4324. DOI: 10.1021/om0498044.
Poláčková, V., & Toma, Š. (2007). Effect of microwave irradi-
ation on the reactivity of chloroarenes in Suzuki—Miyaura
reaction. Chemical Papers, 61, 41–45. DOI: 10.2478/s11696-
006-0093-x.
Poláčková, V., Toma, Š., & Augustínová, I. (2006). Microwave-
promoted cross-coupling of acid chlorides with arylboronic
acids: a convenient method for preparing aromatic ketones.
Tetrahedron, 62, 11675–11678. DOI: 10.1016/j.tet.2006.09.
055.
Poláčková, V., Toma, Š., & Kappe, C. O. (2007). Microwave-
assisted arylation of rac-(E)-3-acetoxy-1,3-diphenylprop-1-
ene with arylboronic acids. Tetrahedron, 63, 8742–8745. DOI:
10.1016/j.tet.2007.06.045.
Shintani, R., Duan, W.-L., Nagano, T., Okada, A., & Hayashi,
T. (2005). Chiral phosphine–olefin bidentate ligands in
asymmetric catalysis: Rhodium-catalyzed asymmetric 1,4-
addition of aryl boronic acids to maleimides. Angewandte
Chemie International Edition, 44, 4611–4614. DOI: 10.1002/
anie.200501305.
Singh, B. K., Kaval, N., Tomar, S., van der Eycken, E., & Par-
mar, V. S. (2008). Transition metal-catalyzed carbon–carbon
bond formation Suzuki, Heck, and Sonogashira reactions us-
ing microwave and microtechnology. Organic Process Re-
search & Development, 12, 468–474. DOI: 10.1021/op800047f.
Gini, F., Hessen, B., & Minnaard, A. J. (2005). Palladium-
catalyzed enantioselective conjugate addition of arylboronic
acids. Organic Letters, 7, 5309–5312. DOI: 10.1021/ol05222
2d.
Gutnov, A. (2008). Palladium-catalyzed asymmetric conjugate
addition of aryl–metal species. European Journal of Organic
Chemistry, 2008, 4547–4554. DOI: 10.1002/ejoc.200800541.
Gutsche, C. D., Strohmayer, H. F., & Chang, J. M. (1958).
Ring enlargements VI. The diazomethane-carbonyl reaction:
Product ratios from the reactions of diazomethane with var-
ious substituted 2-phenylcyclohexanons. The Journal Or-
ganic Chemistry, 23, 1–5. DOI: 10.1021/jo01095a001.
Hayashi, T., Mise, T., Fukushima, M., Kagotani, M., Na-
gashima, N., Hamada, Y., Matsumoto, A., Kawakami, S.,
Konishi, M., Yamamoto, K., & Kumada, M. (1980). Asym-
metric synthesis catalyzed by chiral ferrocenylphosphine–
transition metal complexes. I. Preparation of chiral ferro-
cenylphosphines. Bulletin of the Chemical Society of Japan,
53, 1138–1151. DOI: 10.1246/bcsj.53.1138.
He, P., Lu, Y., Dong, C.-G., & Hu, Q.-S. (2007). Anionic four-
electron donor-based palladacycles as catalysts for addition
reactions of arylboronic acids with α,β-unsaturated ketones,
aldehydes, and α-ketoesters. Organic Letters, 9, 343–346.
DOI: 10.1021/ol062814b.
Helan, V., Mills, A., Drewry, D., & Grant, D. (2010). A rapid
three-component MgI2-mediated synthesis of 3,3-pyrollidinyl
spirooxindoles. The Journal of Organic Chemistry, 75, 6693–
6695. DOI: 10.1021/jo101077g.
Itooka, R., Iguchi, Y.,
& Miyaura, N. (2003). Rhodium-
catalyzed 1,4-addition of arylboronic acids to α,β-unsatura-
ted carbonyl compounds: Large accelerating effects of bases
and ligands. The Journal of Organic Chemistry, 68, 6000–
6004. DOI: 10.1021/jo0207067.
Kantam, M. L., Subrahmanyam, V. B., Kumar, K. B. S.,
Venkanna, G. T., & Sreedhar, B. (2008). Rhodium fluo-
roapatite catalyzed conjugate addition of arylboronic acids