C O M M U N I C A T I O N S
Scheme 5a
facility for mass spectral and NMR spectroscopic analysis (SKI
core grant no. CA02848). We thank Ms. Rebecca Wilson for
editorial counsel.
Note Added after ASAP Publication. After ASAP publication on
October 15, 2008, Scheme 1, Table 1, and the abstract graphic have
been corrected. The revised version was reposted on October 28, 2008.
a Reagents and conditions: buffer at pH ) 6.3-6.5 (6.0 M Gn ·HCl,
188.8 mM Na2HPO4, 7.2 mM p-NO2PhOH), TCEP, room temp, 1 h, 61%
isolated yield.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
Scheme 6a
References
(1) Fischer, E.; Fourneau, E. Ber. Dtsch. Chem. Ges. 1901, 34, 2868–2879.
(2) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149–2154.
(3) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994,
266, 776–779.
(4) Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H. Justus Liebigs
Ann. Chem. 1953, 583, 129–149.
(5) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006, 128, 6640–
6646.
(6) Lai, P.; Everett, R.; Wang, F.; Arakawa, T.; Goldwasser, E. J. Biol. Chem.
1986, 261, 3116–3121.
(7) (a) Warren, J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am.
Chem. Soc. 2004, 126, 6576–6578. (b) Chen, G.; Warren, J. D.; Chen, J.;
Wu, B.; Wan, Q.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 7560–
7462. (c) Chen, J.; Warren, J. D.; Wu, B.; Chen, G.; Wan, Q.; Danishefsky,
S. J. Tetrahedron Lett. 2006, 47, 1969–1972.
a Key: (a) buffer at pH ) 6.3-6.5 (6.0 M Gn ·HCl, 188.8 mM Na2HPO4,
7.2 mM p-NO2PhOH), TCEP, 30 °C, 2-3 h; (b) buffer at pH ) 6.3-6.5
(6.0 M Gn ·HCl, 188.8 mM Na2HPO4, 18.8 mM TCEP ·HCl), TCEP, VA-
044, 37 °C, 2-3 h.
(8) Tam, J. P.; Yu, Q. Biopolymer 1998, 46, 319–327.
(9) Quaderer, R.; Sewing, A.; Hilvert, D. HelV. Chim. Acta 2001, 84, 1197–
1025.
(10) (a) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 128, 526–533. (b)
Pentelute, B. L.; Kent, S. B. H. Org. Lett. 2007, 9, 687–690. (c) Crich, D.;
Banerjee, A. J. Am. Chem. Soc. 2007, 129, 10064–10065. (d) Botti, P.;
Tchertchian, S. WO/2006/133962. (e) Wan, Q.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2007, 46, 9248–9252.
(11) (a) Low, D. W.; Hill, M. G.; Carrasco, M. R.; Kent, S. B. H. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 6554–6559. (b) Wu, B.; Chen, J.; Warren, J. D.;
Chen, G.; Hua, Z.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45,
4416–4425. (c) Chen, G.; Wan, Q.; Tan, Z.; Kan, C.; Hua, Z.; Ranganathan,
K.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 7383–7387. (d)
Payne, R. J.; Fichet, S.; Greenberg, W. A.; Wong, C.-H. Angew. Chem.,
Int. Ed. 2008, 47, 4411–4415. (e) Okamato, R.; Kajihara, Y. Angew. Chem.,
Int. Ed. 2008, 47, 5402–5406.
acid, which may serve as a surrogate for Val, can provide a viable
alternative to Cys in cases where ligation at a Cys site is not
practical. In the event, we were pleased to observe that both peptides
16 and 2 readily underwent ligation with Pen (15) to afford the
corresponding peptides in acceptable yields (Scheme 6). Exposure
to thiol reduction conditions then served to efficiently transform
Pen to Val. A comparative coupling reaction was performed on
the corresponding thioester (Fmoc-RTGDSAG-Thr-SPh). After
24 h, only 4% of compound 19 was generated, based on LC-MS
integration.
In conclusion, we have described a major simplification in the
field of native chemical ligation. Hitherto, the success of this method
had been assumed to be dependent on the formation of a thioester
acyl donor. Through proper balancing of acyl donor potential with
substrate stability, we have demonstrated the feasibility of NCL
with oxo- rather than thioesters. Further applications of this method,
as well as this extended logic, to targets of major biological interest
will be described in due course.
(12) (a) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 10068–10073 Kemp also observed similar results. (b)
Kemp, D. S.; Galakatos, N. G.; Dranginis, S.; Asthon, C.; Fotouhi, N.;
Curran, T. P. J. Org. Chem. 1986, 51, 3320–3324.
(13) Oxo-esters were prepared according to the general procedures described
in references7a, , and 10e. See Supporting Information for full synthetic
details.
(14) Bodanszky, M. Nature 1955, 175, 685.
(15) Gagnon, P.; Huang, X.; Therrien, E.; Keillor, J. W. Tetrahedron Lett. 2002,
43, 7717–7719.
(16) Hojo, H.; Aimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 111–17.
(17) For discussion of C-terminal amino acid racemization in thioester-mediated
NCL, please see references 12a and 19a.
(18) Goodman, M.; McGahren, W. J. Tetrahedron 1967, 23, 2031–2050.
(19) Following submission of this communication Seitz and co-workers reported
a ligation at valine, using penicillamine as the valine precursor. (a) Haase,
C.; Rohde, H.; Seitz, O. Angew. Chem., Int. Ed. 2008, 47, 6807-6810. On
the basis of the results of using penicillamine (15) as a valine surrogate,
described in this communication, our group performed further research
directed to a more reactive thiol-based acyl acceptor culminating in a valine
equivalence, which is described in the following reference. (b) Chen, J.;
Wan, Q.; Yuan, Y.; Zhu, J. L.; Danishefsky, S. J. Angew. Chem. Int. Ed.
2008, Early View, DOI: 10.1002/anie.200803523.
Acknowledgement. Support for this research was provided by
the National Institutes of Health (CA28824). A postdoctoral
fellowship is gratefully acknowledged by Q.W. (Mr. William H.
Goodwin and Mrs. Alice Goodwin and the Commonwealth
Foundation for Cancer Research, and the Experimental Therapeutics
Center, SKI). We thank Dr. George Sukenick, Ms. Sylvi Rusli,
and Ms. Hui Fang of the Sloan-Kettering Institute’s NMR core
JA804993Y
9
15816 J. AM. CHEM. SOC. VOL. 130, NO. 47, 2008