L. Brecker et al.
(B)
(A)
(C)
Figure 4. In situ 1H NMR time course of α-D-glucosyl-1-acetate (α-1a) formation, AcM, and mutarotation at pH 7.3 (A) and 7.2 (B) over 13 h and 90 h,
respectively. [Symbols: close circle (β-1a); open circle (α-1a); close square (β-1b); open square (α-1b); close triangle (β-1c); open triangle (α-1c); star
(β-1d); cross (α-1d); close diamond (β-1e); open diamond (α-1e).] Concentration of summed products in the reaction performed at pH 7.2 over 90 h
is shown in (C). Starting concentrations of α-D-glucosyl-1-phosphate (5) and of acetate are 10 mM and 250 mM, respectively. Signals of H-1 and of the
acetate groups are used to obtain the progress curves of the intermediates and products.
NMR spectroscopic measurements
[6] A. Teleman, M. Nordstrom, M. Tenkanen, A. Jacobs, O. Dahlman,
Carbohydr. Res. 2003, 338, 525.
All spectra are recorded on a DRX-600 AVANCE spectrometer
(Bruker, Rheinstetten, Germany), equipped with a triple resonance
xyz-gradient inverse probe and processed using the Topspin 1.3
software.1Hirradiationandmeasurementfrequencyis600.13 MHz
and the sample temperature is adjusted to 303.15 0.01 K. The
1D 1H and selTOCSY spectra are recorded with a 30◦ 1H-pulse,
acquisition of 32 768 data points, digital FID resolution of 0.18 Hz,
a relaxation delay of 1.0 s, and accumulation of 16 to 512 scans.[26]
[7] H. A. Schols, A. G. J. Voragen, in HandbookofFoodEnzymology, (Eds:
J. R. Whitaker, A. G. J. Voragen, D. W. S. Wong), Marcel Dekker: New
York and Basel, 2003, pp 829.
[8] H. G. Park, J. H. Do, H. N. Chang, Biotechnol. Bioprocess Eng. 2003, 8,
1.
[9] B. La Ferla, Monatsh. Chem. 2002, 133, 351.
[10] K.-F. Hsiao, H.-J. Lin, D.-L. Leu, S.-H. Wu, K.-T. Wang, Bioorg. Med.
Chem. Lett. 1994, 4, 1629.
[11] K. Kefurt, Z. Kefurtova, J. Jary, I. Horakova, M. Marek, Carbohydr. Res.
1992, 223, 137.
1
The overwhelming HDO signal in H NMR spectra is suppressed
[12] M. Mastihubova, P. Biely, Carbohydr. Res. 2004, 339, 1353.
[13] V. Molinier, K. Wisniewski, A. Bouchu, J. Fitremann, Y. Queneau, J.
Carbohydr. Chem. 2003, 22, 657.
by presaturation. For selective excitation in selTOCSY Gaussian
pulses with 50 ms duration are used and the mixing times varied
between 25 and 100 ms. After zero filling to 65 536 data points
the free induction decays are Fourier transformed to spectra of
6000 Hz range. 2D TOCSY and NOESY spectra are recorded with
1024 data points and 8 scans in the t2-dimension, as well as with
256 experiments in t1-dimension leading to measurement times
between 75 and 100 min and to digital FID resolutions of 4.7 Hz
(t2-dimension) and 18.7 Hz (t1-dimension). Zero filling to 512 data
points in t1-dimension, appropriate sinusoidal multiplication, and
Fourier transformation lead to spectra with 6000 Hz range in both
dimensions. Mixing time in 2D NOESY spectra is 800 ms. All spectra
are referenced to external acetone (δ 1H: 2.225 ppm).
[14] M. U. Roslund, O. Aitio, J. Warnaa, H. Maaheimo, D. Y. Murzin,
R. Leino, J. Am. Chem. Soc. 2008, 130, 8769.
[15] M. A. Rangelov, G. N. Vayssilov, D. D. Petkov, Int. J. Quantum Chem.
2006, 106, 1346.
[16] E. A. Pritchina, N. P. Gritsan, G. T. Burdzinski, M. S. Platz, J. Phys.
Chem. A 2007, 111, 10483.
[17] D. Horton, W. E. Mast, K. D. Philips, J. Org. Chem. 1967, 32, 1471.
[18] M. R. Vignon, J. A. Vottero, Tetrahedron Lett. 1976, 28, 2445.
[19] J. M. Brown, P. A. Chaloner, A. Colens, J. Chem. Soc., Perkin Trans. 2
1979, 71.
[20] A. Schwarz, L. Brecker, B. Nidetzky, Biochem. J. 2007, 403, 441.
[21] J. J. Mieyal, M. Simon, R. H. Abeles, J. Biol. Chem. 1972, 247, 532.
[22] L. Brecker, D. W. Ribbons, Trends Biotechnol. 2000, 18, 197.
[23] J.-P. Grivet, A.-M. Delort, J.-C. Portais, Biochimie 2003, 85, 823.
[24] P. Sedmera, P. Halada, C. Peterbauer, J. Volc, TetrahedronLett. 2004,
45, 8677.
Acknowledgment
[25] P. Sedmera, P. Halada, E. Kubatova, D. Haltrich, V. Prikrylova, J. Volc,
J. Mol. Catal. B: Enzym. 2006, 41, 32.
We thank Susanne Felsinger (University of Vienna) for recording
several NMR spectra.
[26] C. Tyl, S. Felsinger, L. Brecker, J. Mol. Catal. B: Enzymol. 2004, 28, 55.
[27] J. M. Indelicato, B. A. Stewart, G. L. Engel, J. Pharm. Sci. 1980, 69,
1183.
[28] pH values were calculated according to: pH
= pD + 0.4.
(a) P. R. Mussini, T. Mussini, S. Rondinini, Pure Appl. Chem. 1997,
69, 1007; (b) D. Luo, Huaxue Shijie 1985, 26, 24.
References
[29] S. Hanessian, V. Mascitti, P. Lu, H. Ishida, Synthesis 2002, 14, 1959.
[30] M. Bols, H. C. Hansen, Acta Chem. Scand. 1993, 47, 818.
[31] M. Abbadi, C. Morin, Bioorg. Med. Chem. Lett. 1999, 9, 1779.
[32] K. M. Taba, R. Ko¨ster, W. V. Dahlhoff, Synthesis 1983, 1036.
[33] K. Nomura, K. Sugimoto, H. Nishiura, K. Ohdan, T. Nishimura,
H. Hayashi, T. Kuriki, Biosci. Biotechnol. Biochem. 2008, 72, 82.
[1] E. Fischer, Ber. Dtsch. Chem. Ges. 1920, 53, 1621.
[2] B. Helferich, W. Klein, Liebigs Ann. Chem. 1927, 455, 173.
[3] R. Schauer, Meth. Enzymol. 1987, 138, 611.
[4] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis
(3rd Edn), John Wiley & Sons, Inc.: New York, 1999, pp 149.
[5] M. A. Kabel, P. de Waard, H. A. Schols, A. G. J. Voragen, Carbohydr.
Res. 2003, 338, 69.
c
Copyright ꢀ 2009 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2009, 47, 328–332