A Palladium-Catalyzed Approach to Polycyclic Sulfur Heterocycles
Andrew Martins and Mark Lautens*
DaVenport Research Laboratories, Department of Chemistry, UniVersity of Toronto,
80 St. George Street, Toronto, Ontario, Canada M5S 3H6
ReceiVed September 15, 2008
The synthesis of a variety of polycyclic thiophenes and benzothiophenes is accomplished via a palladium-
catalyzed domino ortho-alkylation/direct arylation reaction. An examination of the intramolecular direct
arylation of thiophenes suggests that an electrophilic metalation mechanism may be present. This method
was further extended to include the synthesis of a (thieno)benzoxepine.
Introduction
generate polycyclic thiophenes from aryl iodides and 3-(bro-
moalkyl)thiophenes (Scheme 1).7
Polycyclic thiophene-based heterocycles are key intermediates
and relevant targets in the fields of synthetic, medicinal, and
materials chemistry. Recently, numerous thiophenes and ben-
zothiophenes have emerged as classes of molecules with
synthetic utility1 and a wide array of biological activities.2 As
such, an efficient and expedient method to synthesize a wide
variety of this class of molecules would be highly desirable.
Although numerous methods have been devised to generate
these heterocycles, there are seldom, if any general, catalytic
methods for their synthesis. With this in mind, we endeavored
to extend the ortho-alkylation/C-C coupling methodology
developed in our laboratories3 to the synthesis of annulated
polycyclic thiophene-based heterocycles. By combining the
strategies of palladium-catalyzed aromatic ortho-alkylation
derived from the Catellani reaction4 with the direct arylation5
of thiophene-based heterocycles,6 we foresaw a method to
Results and Discussion
Thiophene-Based Heterocycles. In order to enable expedient
access to polycyclic thiophenes, the bromoalkylthiophene
component must be accessible through simple, straightforward
chemistry (Scheme 2). From commercially available 3-formylth-
iophene, 3-(3-bromopropyl)thiophene 2a is easily accessed
through a Wittig/reduction/hydrogenation/bromination reaction
sequence. Alternatively, (2E)-3-(3-thienyl)acrylic acid can be
used as a precursor to 2a to avoid the Wittig olefination step,
although this route is much less cost-effective. To access 2b,
commercially available 2-(3-thienyl)ethanol is converted to the
alkyl bromide with PBr3. The aforementioned methods worked
(4) (a) Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. Engl.
1997, 36, 119–122. (b) Catellani, M.; Mealli, C.; Motti, E.; Paoli, P.; Perez-
Carreno, E.; Pregosin, P. S. J. Am. Chem. Soc. 2002, 124, 4336–4346. (c)
Catellani, M. Synlett 2003, 298–313.
(5) Selected reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV.
2007, 107, 174–238. (b) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006,
1253–1264. (c) Miura, M.; Satoh, T. Top. Organomet. Chem. 2005, 14, 55–83.
(d) Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9, 625–655. (e) Ritleng,
V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731–1769. (f) Kakiuchi, F.;
Murai, S. Acc. Chem. Res. 2002, 35, 826–834. (g) Hassan, J.; Se´vignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. ReV. 2002, 102, 1359–1469. (h) Miura,
M.; Nomura, M. Top. Curr. Chem. 2002, 219, 211–241. (i) Dyker, G. Angew.
Chem., Int. Ed. 1999, 38, 1698–1712.
(6) Selected examples: (a) Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.;
Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1990,
31, 1951–1958. (b) Gozzi, C.; Lavenot, L.; Ilg, K.; Penalva, V.; Lemaire, M.
Tetrahedron Lett. 1997, 38, 8867–8870. (c) Pivsa-Art, S.; Satoh, T.; Kawamura,
Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467–473. (d)
McClure, M. S.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M. H.;
Roschangar, F. Org. Lett. 2001, 3, 1677–1680. (e) Glover, B.; Harvey, K. A.;
Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett. 2003, 5, 301–304.
(7) Martins, A.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 4827–4829.
(1) Carpino recently reported a polycyclic thiophene as an easily cleaved
protecting group for amino acids; see: Carpino, L. A.; Abdel-Maksoud, A. A.;
Ionescu, D.; Mansour, E. M. E.; Zewail, M. A. J. Org. Chem. 2007, 72, 1729–
1736.
(2) As retinoic acid receptor antagonists for the treatment of leukemia and
related carcinoma, see: (a) Yoshimura, H.; Nagai, M.; Hibi, S.; Kikuchi, K.;
Abe, S.; Hida, T.; Higashi, S.; Hishinuma, I.; Yamanaka, T. J. Med. Chem. 1995,
38, 3163–3173. As PTP 1B modulators for antiobesity/antidiabetic treatments
see: (b) Lee, J. et al. US2006135488. As DNA Topoisomerase II inhibitors in
multidrug-resistant cells, see: (c) Zhu, H.; et al. Mol. Cancer Therapeut. 2007,
6, 484–495. As an intercalating agent and displaying cytotoxicity toward human
lung carcinoma cells, see: (d) Xu, Y.; Qu, B.; Qian, X.; Li, Y. Bioorg. Med.
Chem. Lett. 2005, 15, 1139–1142.
(3) Selected examples: (a) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem.
Soc. 2005, 127, 13148–13149. (b) Blaszykowski, C.; Aktoudianakis, V.; Bressy,
C.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 2043–2045. (c) Jafarpour, F.;
Lautens, M. Org. Lett. 2006, 8, 3601–3604. (d) Blaszykowski, C.; Aktoudianakis,
E.; Alberico, D.; Bressy, C.; Hulcoop, D. G.; Jafarpour, F.; Joushaghani, A.;
Laleu, B.; Lautens, M. J. Org. Chem. 2008, 73, 1888–1897.
10.1021/jo8020105 CCC: $40.75
Published on Web 10/18/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 8705–8710 8705