4
Acknowledgments
12. Sridharan, V.; Menéndez, J. C. Chem. Rev. 2010, 110,
3805–3849.
This work was supported by Mahasarakham University,
Human Resource Development in Science Project (Science
Achievement Scholarship of Thailand; SAST), the Center of
Excellence for Innovation in Chemistry (PERCH-CIC) and the
Division of Research Facilitation and Dissemination,
Mahasarakham University.
13. Wang, L.; Jing, H.; Bu, X.; Chang, T.; Jin, L.; Liang, Y.
Catal. Commun. 2007, 8, 80–82.
14. (a) Hwu, J, R.; Jain, M, L.; Tsai, F, Y.; Tsay, S, C.;
Balakumar, A.; Hakimelahi, G. H. J. Org. Chem. 2000, 65,
5077–5088; (b) Hwu, J. R.; Jain, M. L.; Tsai, F. Y.;
Balakumar, A.; Hakimelahi, G. H.; Tsay, S. C. Arkivoc
2002, ix, 28–36.
Supporting information
15. Ali, M. H.; Niedbalski, M.; Bohnert, G.; Bryant, D. Synth
Commun. 2006, 36, 1751–1759.
Supplementary data associated with this article can be found,
in the online version, at…
16. Clark, J. H.; Rhodes, C. N. Clean Synthesis using Porous
Inorganic Solid Acid Catalysts and Supported Reagents;
RSC Clean Technology Monographs: Cambridge, UK,
2000.
References and notes
1. Kumar, R. N.; Suresh, T.; Mohan, P. S. Tetrahedron Lett.
2002, 43, 3327–3328.
17. Preparation of 10% CAN-SiO2: a solution of CAN (1.01 g)
in H2O (2.0 mL) was added dropwise to silica gel 60 (9.01
g, Merck Kieselgel 60, particle size 0.063–0.200 mm, 70–
230 mesh) under stirring followed by evaporation under
reduced pressure at 60 ºC for 4 h. A dry yellowish powder
was collected and stored in a well-sealed bottle. (Other
loading ratios of CAN-SiO2 were prepared by the same
method (9.51 g silica gel and 0.51 g CAN for 5% CAN-
SiO2, 8.51 g silica gel and 1.51 g CAN for 15% CAN-
SiO2).
2. Gribble, G. W.; Pelcman, B. J. Org. Chem. 1992, 57, 3636–
3642.
3. Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083–
1094.
4. (a) Xu, H.; Wang, Y. Y. Bioorg. Med. Chem. Lett. 2010, 20,
7274–7277; (b) Nyerges, M.; Pintér, Á; Virányi, A; Bitter,
I; Tőke, L. Tetrahedron Lett. 2005, 46, 377–380; (c)
Sharma, V.; Kalia, R.; Raj, T; Gupta, V. K.; Suri, N.;
Saxena, A. K.; Sharma, D.; Bhella, S. S.; Singh, G.; Ishar,
M. P. S. Acta Pharm Sin B. 2012, 2, 32–41; (d) Achab, S.
Tetrahedron Lett. 1996, 37, 5503–5506; (e) Brenna, E.;
Fuganti, C.; Serra, S. Tetrahedron 1998, 54, 1585–1588; (f)
Singh, S.; Srivastava, A.; Samanta, S. Tetrahedron Lett.
2012, 53, 6087–6090; (g) Majumder, S.; Bhuyan, P. J.
Tetrahedron Lett. 2012, 53, 137–140.
18. Typical procedure: a mixture of indole (1 mmol), HMTA
(2.5 mmol) and 10% CAN-SiO2 was refluxed in CH3CN
(5.0 mL). After the reaction was complete, the mixture was
evaporated to give a crude residue of CAN-SiO2 and
product. The crude residue was washed with EtOAc (10
mL×5) and dried to leave a crude product that was purified
by short flash column chromatography (EtOAc/hexane = 1:
3).
5. (a) Chatterjee, A.; Biswas, K. M. J. Org. Chem. 1973, 38,
4002–4004; (b) Khadka, D. B.; Yang, S. H.; Cho, S. H.;
Zhao, C.; Cho, W. J. Tetrahedron 2012, 68, 250–261; (c)
Thomas, A. D.; Josemin; Asokan, C. V. Tetrahedron 2004,
60, 5069–5076; (d) Biradar, J. S.; Sasidhar, B. S.; Parveen,
R. Eur. J. Med. Chem. 2010, 45, 4074–4078.
Spectral data for 2-(3-methoxyphenyl)-1H-indole-3-
carbaldehyde (Table 3, entry 9): pale yellow solid; 1H-
NMR (300 MHz, CDCl3): δ= 3.80 (s, 3H, CH3), 7.19 (dd, J
= 2.66, 8.27 MHz, 1H, ArH), 7.35 (d, J = 8.13 MHz, 1H,
ArH), 7.39 (m, 1H, ArH), 8.25 (d, J = 7.28 MHz, 1H, ArH),
9.99 (s, 1H, CHO), 11.68 (br s, 1H, NH); 13C-NMR (75
MHz, CDCl3): 54.9, 111.3, 113.8, 114.7, 114.9, 121.2,
121.9, 122.1, 123.3, 125.6, 129.4, 131.1, 135.7, 148.9,
159.2, 185.9; IR (KBr): 3175, 1628, 1453, 1370, 1239,
1166 cm-1; HRMS: m/z calcd for C16H13NO2 [M+Na]+
274.0858.
6. Wynberg, H. Chem. Rev., 1960, 60, 169–184.
7. (a) Crounse, N. N. J. Am. Chem. Soc. 1949, 71, 1263–1264;
(b) Tanaka, M.; Fujiwara, M.; Xu, Q.; Souma, Y.; Ando,
H.; Laali, K. K. J. Am. Chem. Soc. 1997, 119, 5100–5105;
(c) Tanaka, M.; Fujiwara, M.; Ando, H. J. Org. Chem.
1995, 60, 2106–2111; (d) Tanaka, M.; Fujiwara, M.; Xu,
Q.; Ando, H.; Raeker, T. J. J. Org. Chem. 1998, 63, 4408–
4412.
Spectral data for 5-methoxy-2-phenyl-1H-indole-3-
1
carbaldehyde (Table 3, entry 10): pale yellow solid; H-
8. Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924–
NMR (300 MHz, CDCl3): δ= 3.79 (s, 3H, CH3), 6.80 (dd, J
= 2.21, 8.97 MHz, 1H, ArH), 7.22 (d, J = 8.75 MHz, 1H,
ArH), 7.45 (m, 3H, ArH), 7.59 (d, J = 6.2 MHz, 2H, ArH),
7.73 (s, 1H, ArH), 9.91 (s, 1H, CHO), 11.82 (br s, 1H, NH);
13C-NMR (75 MHz, CDCl3): 55.1, 102.7, 112.2, 113.2,
113.6, 126.4, 128.3, 129.1, 129.9, 130.6, 149.1, 155.75,
185.7; IR (KBr): 3129, 2982, 1624, 1468, 1368, 1259, 1213
cm-1; HRMS: m/z calcd for C16H13NO2 [M+Na]+ 274.0834.
11927.
9. Li, L. T.; Huang, J.; Li, H. Y.; Wen, L. J.; Wang, P.; Wang,
B. Chem. Commun. 2012, 48, 5187–5189.
10. Fei, H; Yu, J.; Jiang, Y.; Guo, H.; Cheng, J. Org. Biomol.
Chem. 2013, 11, 7092–7095.
11. (a) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800–
3842; (b) Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland,
F.; Ilharco, L. M.; Pagliaro, M. Chem. Rev. 2013, 113,
6592–6620.