Organometallics 2008, 27, 5937–5942
5937
Catalytic Amidation of 9-Iodo-m-carborane and 2-Iodo-p-carborane
at a Boron Atom
Sergey N. Mukhin,† Kuanysh Z. Kabytaev,† Galina G. Zhigareva,‡ Ivan V. Glukhov,‡
Zoya A. Starikova,‡ Vladimir I. Bregadze,*,‡ and Irina P. Beletskaya*,†
Chemistry Department, M. V. LomonosoV Moscow State UniVersity, Leninskye Gory,
119992 Moscow, Russian Federation, and A. N. NesmeyanoV Institute of Organoelement Compounds,
28 VaViloV Street, 119991 Moscow, Russian Federation
ReceiVed July 6, 2008
The palladium-catalyzed amidation of B-iodocarboranes by various amides is described for the first
time. The reactions of 2-iodo-1,12-dicarba-closo-dodecaborane (2-iodo-p-carborane) with acetamide,
2-pyrrolidinone, caprolactam, p-methylbenzamide, and 2-phenylacetamide using the system Pd(dba)2/
BINAP/NaH (dba ) dibenzylideneacetone; BINAP ) rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl)
in dioxane at 100 °C gave 2-p-carboranyl derivatives of these amides in good to high yields. Similar
reactions of 9-iodo-1,7-dicarba-closo-dodecaborane (9-iodo-m-carborane) with corresponding amides
afforded 9-m-carboranyl derivatives in good to high yields. The structures of N-(1,12-dicarba-closo-
dodecaboran-2-yl)pyrrolidin-2-one (5), N-(1,7-dicarba-closo-dodecaboran-9-yl)acetamide (6), and N-(1,7-
dicarba-closo-dodecaboran-9-yl)-2-phenylacetamide (7) have been established by X-ray diffraction studies.
studied,8 alternative routes involving reactions at the boron
center are still a challenge.
Introduction
The unique properties of carboranes account for many
applications in materials science,1-4 nonlinear optics,2,5,6 and
medicinal chemistry,7 especially in boron neutron capture
therapy (BNCT). The last method requires the development of
new routes to incorporate carborane groups into biologically
active compounds. Carborane units can be attached to other
molecule either via their C or B atoms. While substitution at
the carbon atom in carborane derivatives has been extensively
Palladium-catalyzed cross-coupling provides a novel route
for the introduction of functionality at the boron atoms.9
However, the study of this palladium-catalyzed boron-carbon
bond formation revealed significant differences between the
reactivity of C-Hal10 and carborane B-Hal bonds. Thus, all
attempts to detect the formation of a [C2H11B10-PdL2I]
complex, which could in principle be formed as a result of
oxidative addition of the B-I bond to the Pd(0) center, have
failed thus far.11 DFT calculations also indicate that B-I bond
reactivity is much lower than the reactivity of an aromatic C-Cl
bond.12
* To whom correspondence should be addressed. E-mail: beletska@
org.chem.msu.ru (I.P.B.); bre@ineos.ac.ru (V.I.B.).
† M. V. Lomonosov Moscow State University.
‡ A. N. Nesmeyanov Institute of Organoelement Compounds.
(1) (a) Yang, X.; Jiang, W.; Knobler, C. B.; Hawthorne, M. F. J. Am.
Chem. Soc. 1992, 114, 9719. (b) Mueller, J.; Base, K.; Magnera, T. F.;
Michl, J. J. Am. Chem. Soc. 1992, 114, 9721. (c) Scho¨berl, U.; Magnera,
T. E.; Harrison, R. M.; Fleischer, F.; Pflug, J. L.; Schwab, P. F. H.; Meng,
X.; Lipiak, D.; Noll, B. C.; Allured, V. S.; Rudalevige, T.; Lee, S.; Michl,
J. J. Am. Chem. Soc. 1997, 119, 3907. (d) Schwab, P.; Levin, M. D.; Michl,
J. Chem. ReV. 1999, 99, 1863.
In comparison with cross-coupling reactions such as the
Suzuki and Sonogashira reactions, amination and especially
amidation reactions are much more challenging and complicated
processes.13 It is known that even with aryl iodides these
reactions require an appropriate choice of base and ligand and
(2) (a) Murphy, D. M.; Mingos, D. M. P.; Forward, J. M. J. Mater.
Chem. 1993, 3, 67. (b) Murphy, D. M.; Mingos, D. M. P.; Haggitt, J. L.;
Powell, H. R.; Westcott, S. A.; Marder, T. B.; Taylor, N. J.; Kanis, D. R.
J. Mater. Chem. 1993, 3, 139.
(7) (a) Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth,
R. F.; Codogni, I. M.; Wilson, J. G. Chem. ReV. 1998, 98, 1515. (b)
Hawthorne, M. F.; Maderna, A. Chem. ReV. 1999, 99, 3421. (c) Valliant,
J. F.; Guenther, K. J.; King, A. S. Coord. Chem. ReV. 2002, 232, 173. (d)
Endo, Y.; Iijima, T.; Yamakoshi, Y.; Fukasawa, H.; Miyaura, C.; Inada,
M.; Kubo, A.; Itai, A. Chem. Biol. 2001, 8, 341. (e) Bregadze, V. I.; Sivaev,
I. B.; Glazun, S. A. Anti-Cancer Agents Med. Chem. 2006, 6, 75.
(8) (a) Grimes, R. N. Carboranes; Academic Press: New York, 1970.
(b) Bregadze, V. I. Chem. ReV. 1992, 92, 209.
(9) (a) Zakharkin, L. I.; Kovredov, V. A.; Ol’shevskaya, V. A.;
Shaugumbekova, Z. S. J. Organomet. Chem. 1982, 226, 217. (b) Vinas,
C.; Barbera, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.; Rosair, G. M.
Inorg. Chem. 2001, 40, 6555. (c) Jiang, W.; Harwell, D. E.; Mortimer,
M. D.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1996, 35, 4355. (d)
Li, J.; Logan, C. F.; Jones, M. Inorg. Chem. 1991, 30, 4866. (e) Zheng, Z.;
Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem.
1995, 34, 2095. (f) Eriksson, L.; Beletskaya, I. P.; Bregadze, V. I.; Sivaev,
I. B.; Sjo¨berg, S. J. Organomet. Chem. 2002, 657, 267.
(3) (a) Jiang, W.; Knobler, C. B.; Curtis, C. E.; Mortimer, M. D.;
Hawthorne, M. F. Inorg. Chem. 1995, 34, 3491. (b) Jiang, W.; Knobler,
C. B.; Hawthorne, M. F. Inorg. Chem. 1996, 35, 3056. (c) Jiang, W.;
Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Hawthorne, M. F. Inorg.
Chem. 1996, 35, 4355. (d) Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res.
1997, 30, 267. (e) Bayer, M. J.; Herzog, A.; Diaz, M.; Harakas, G. A.;
Lee, H.; Knobler, C. B.; Hawthorne, M. F. Chem. Eur. J. 2003, 9, 2732.
(4) (a) Colquhoun, H. M.; Herbertson, P. L.; Wade, K.; Baxter, I.;
Williams, D. J. Macromolecules 1998, 31, 1694. (b) Alekseyeva, E. S.;
Fox, M. A.; Howard, J. A. K.; Macbride, J. A. H.; Wade, K. Appl.
Organomet. Chem. 2003, 17, 499.
(5) (a) Lamrani, M.; Hamasaki, R.; Mitsuishi, M.; Miyashita, T.;
Yamamoto, Y. Chem. Commun. 2000, 1595. (b) Tsuboya, N.; Lamrani,
M.; Hamasaki, R.; Ito, M.; Mitsuishi, M.; Miyashita, T.; Yamamoto, Y. J.
Mater. Chem. 2002, 12, 2701.
(6) (a) Kaszynski, P.; Douglas, A. G. J. Organomet. Chem. 1999, 581,
28. (b) Piecek, W.; Kaufman, J. M.; Kaszynski, P. A. Liq. Cryst. 2003, 30,
39. (c) Pahomov, S.; Young, V. G.; Kaszynski, P. Inorg. Chem. 2000, 39,
2243. (d) Kaszynski, P.; Pahomov, S.; Young, V. G. Collect. Czech. Chem.
Commun. 2002, 67, 1061.
(10) Negishi, E., Ed. Handbook of Organopalladium Chemistry for
Organic Synthesis; Wiley: New York, 2002.
(11) Marshall, W. J.; Young, R. J., Jr.; Grushin, V. V. Organometallics
2001, 20, 523.
(12) Vinˇas, C.; Barbera, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.;
Rosair, G. M. Inorg. Chem. 2001, 40, 6555.
10.1021/om800635d CCC: $40.75
2008 American Chemical Society
Publication on Web 10/24/2008