10.1002/anie.202011641
Angewandte Chemie International Edition
COMMUNICATION
Bull, Synthesis 2019, 51, 3171; v) A. Trowbridge, S. M. Walton, M. J.
Gaunt, Chem. Rev. 2020, 120, 2613.
As shown in Scheme 3, products 4p–4y were obtained
predominantly as trans-diastereomers. The trans-diastereomers
are in fact the kinetic products of these reactions, as it has been
[3]
Selected recent examples of mechanistically diverse methods for amine
C–H bond functionalization: a) Z. Zhao, Y. Luo, S. Liu, L. Zhang, L.
Feng, Y. Wang, Angew. Chem. Int. Ed. 2018, 57, 3792; b) F. Wang, M.
Rafiee, S. S. Stahl, Angew. Chem. Int. Ed. 2018, 57, 6686; c) S.
Greßies, F. J. R. Klauck, J. H. Kim, C. G. Daniliuc, F. Glorius, Angew.
Chem. Int. Ed. 2018, 57, 9950; d) R. J. Griffiths, W. C. Kong, S. A.
Richards, G. A. Burley, M. C. Willis, E. P. A. Talbot, Chem. Sci. 2018, 9,
2295; e) F. I. M. Idiris, C. E. Majeste, G. B. Craven, C. R. Jones, Chem.
Sci. 2018, 9, 2873; f) S.-S. Li, X. Lv, D. Ren, C.-L. Shao, Q. Liu, J. Xiao,
Chem. Sci. 2018, 9, 8253; g) A. F. G. Maier, S. Tussing, H. Zhu, G.
Wicker, P. Tzvetkova, U. Flörke, C. G. Daniliuc, S. Grimme, J. Paradies,
Chem. Eur. J. 2018, 24, 16287; h) K. Mori, R. Isogai, Y. Kamei, M.
Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2018, 140, 6203; i) M.
Shang, J. Z. Chan, M. Cao, Y. Chang, Q. Wang, B. Cook, S. Torker, M.
Wasa, J. Am. Chem. Soc. 2018, 140, 10593; j) A. J. J. Lennox, S. L.
Goes, M. P. Webster, H. F. Koolman, S. W. Djuric, S. S. Stahl, J. Am.
Chem. Soc. 2018, 140, 11227; k) J. Zhang, S. Park, S. Chang, J. Am.
Chem. Soc. 2018, 140, 13209; l) A. M. Nauth, E. Schechtel, R. Dören,
W. Tremel, T. Opatz, J. Am. Chem. Soc. 2018, 140, 14169; m) H.-J.
Jiang, X.-M. Zhong, J. Yu, Y. Zhang, X. Zhang, Y.-D. Wu, L.-Z. Gong,
Angew. Chem. Int. Ed. 2019, 58, 1803; n) M. A. Ashley, C. Yamauchi, J.
C. K. Chu, S. Otsuka, H. Yorimitsu, T. Rovis, Angew. Chem. Int. Ed.
2019, 58, 4002; o) S. Guin, P. Dolui, X. Zhang, S. Paul, V. K. Singh, S.
Pradhan, H. B. Chandrashekar, S. S. Anjana, R. S. Paton, D. Maiti,
Angew. Chem. Int. Ed. 2019, 58, 5633; p) W. G. Whitehurst, J. H.
Blackwell, G. N. Hermann, M. J. Gaunt, Angew. Chem. Int. Ed. 2019,
58, 9054; q) Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Angew.
Chem. Int. Ed. 2019, 58, 16548; r) R. Grainger, T. D. Heightman,
Steven V. Ley, F. Lima, C. N. Johnson, Chem. Sci. 2019, 10, 2264; s)
D. Vasu, A. L. Fuentes de Arriba, J. A. Leitch, A. de Gombert, D. J.
Dixon, Chem. Sci. 2019, 10, 3401; t) S. Asako, S. Ishihara, K. Hirata, K.
Takai, J. Am. Chem. Soc. 2019, 141, 9832; u) W. Lin, K.-F. Zhang, O.
Baudoin, Nat. Catal. 2019, 2, 882; v) J. Z. Chan, Y. Chang, M. Wasa,
Org. Lett. 2019, 21, 984; w) L. Zhou, Y.-B. Shen, X.-D. An, X.-J. Li, S.-S.
Li, Q. Liu, J. Xiao, Org. Lett. 2019, 21, 8543; x) M. Kataoka, Y. Otawa,
N. Ido, K. Mori, Org. Lett. 2019, 21, 9334; y) M. Lee, A. Adams, P. B.
Cox, M. S. Sanford, Synlett 2019, 30, 417; z) M. Kapoor, P. Chand-
Thakuri, J. M. Maxwell, D. Liu, H. Zhou, M. C. Young, Synlett 2019, 30,
519; aa) K. Ohmatsu, R. Suzuki, Y. Furukawa, M. Sato, T. Ooi, ACS
Catal. 2020, 10, 2627; ab) J. B. Roque, Y. Kuroda, J. Jurczyk, L.-P. Xu,
J. S. Ham, L. T. Göttemann, C. A. Roberts, D. Adpressa, J. Saurí, L. A.
Joyce, D. G. Musaev, C. S. Yeung, R. Sarpong, ACS Catal. 2020, 10,
2929; ac) A. W. Rand, H. Yin, L. Xu, J. Giacoboni, R. Martin-Montero, C.
Romano, J. Montgomery, R. Martin, ACS Catal. 2020, 10, 4671; ad) W.
Liu, T. Babl, A. Röther, O. Reiser, H. M. L. Davies, Chem. Eur. J. 2020,
26, 4236; ae) P. Verma, J. M. Richter, N. Chekshin, J. X. Qiao, J.-Q. Yu,
J. Am. Chem. Soc. 2020, 142, 5117; af) M. M. Walker, B. Koronkiewicz,
S. Chen, K. N. Houk, J. M. Mayer, J. A. Ellman, J. Am. Chem. Soc.
2020, 142, 8194; ag) K. Feng, R. E. Quevedo, J. T. Kohrt, M. S.
Oderinde, U. Reilly, M. C. White, Nature 2020, 580, 621; ah) P. J.
Sarver, V. Bacauanu, D. M. Schultz, D. A. DiRocco, Y.-h. Lam, E. C.
Sherer, D. W. C. MacMillan, Nat. Chem. 2020, 12, 459; ai) J. B.
McManus, N. P. R. Onuska, M. S. Jeffreys, N. C. Goodwin, D. A.
Nicewicz, Org. Lett. 2020, 22, 679; aj) R. Oeschger, B. Su, I. Yu, C.
Ehinger, E. Romero, S. He, J. Hartwig, Science 2020, 368, 736; ak) M.
A. Short, J. M. Blackburn, J. L. Roizen, Synlett 2020, 31, 102; al) A. S.
H. Ryder, W. B. Cunningham, G. Ballantyne, T. Mules, A. G. Kinsella, J.
Turner-Dore, C. M. Alder, L. J. Edwards, B. S. J. McKay, M. N. Grayson,
A. J. Cresswell, Angew. Chem. Int. Ed. 2020, 59, 14986.
established
that
the
corresponding
cis-isomers
are
thermodynamically more stable.[19]
Interconversion of the
diastereomers is possible, presumably via a retro-Mannich or
retro-conjugate addition pathway. Indeed, simply changing the
reaction conditions in the synthesis of product 4p allowed for a
complete reversal of diastereoselectivity in favor of the cis-
isomer (Scheme 4).
Scheme 4. Formation of cis-product.
In summary, we have achieved the α-alkylation of
unprotected alicyclic amines via a decarboxylative Mannich
process involving regioselective C–H bond functionalization.
Adding an SNAr step to the overall reaction sequence, this
process was further extended to the synthesis of polycyclic
dihydroquinolones in a single operation.
Acknowledgements
Financial support from the NIH−NIGMS (Grant
R01GM101389) is gratefully acknowledged.
spectrometry instrumentation was supported by a grant from
the NIH (S10 OD021758-01A1).
Mass
Keywords: C–H bond functionalization • alicyclic amines •
decarboxylative C–C bond formation • Mannich reaction •
annulation
[1]
[2]
a) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57,
5845; b) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014,
57, 10257.
Selected recent reviews on amine C–H bond functionalization: a) K. R.
Campos, Chem. Soc. Rev. 2007, 36, 1069; b) R. Jazzar, J. Hitce, A.
Renaudat, J. Sofack-Kreutzer, O. Baudoin, Chem. Eur. J. 2010, 16,
2654; c) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; d) E.
A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes,
Chem. Eur. J. 2012, 18, 10092; e) K. M. Jones, M. Klussmann, Synlett
2012, 23, 159; f) B. Peng, N. Maulide, Chem. Eur. J. 2013, 19, 13274;
g) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53,
74; h) M. C. Haibach, D. Seidel, Angew. Chem. Int. Ed. 2014, 53, 5010;
i) L. Wang, J. Xiao, Adv. Synth. Catal. 2014, 356, 1137; j) C.-V. T. Vo, J.
W. Bode, J. Org. Chem. 2014, 79, 2809; k) D. Seidel, Org. Chem. Front.
2014, 1, 426; l) Y. Qin, J. Lv, S. Luo, Tetrahedron Lett. 2014, 55, 551;
m) D. Seidel, Acc. Chem. Res. 2015, 48, 317; n) J. W. Beatty, C. R. J.
Stephenson, Acc. Chem. Res. 2015, 48, 1474; o) S. Mahato, C. K.
Jana, Chem. Rec. 2016, 16, 1477; p) Y. Qin, L. Zhu, S. Luo, Chem.
Rev. 2017, 117, 9433; q) M.-X. Cheng, S.-D. Yang, Synlett 2017, 28,
159; r) J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed. 2018, 57, 62; s) L.
Gonnard, A. Guérinot, J. Cossy, Tetrahedron 2019, 75, 145; t) S. Liu, Z.
Zhao, Y. Wang, Chem. Eur. J. 2019, 25, 2423; u) D. Antermite, J. A.
[4]
[5]
P. R. Payne, P. Garcia, P. Eisenberger, J. C. H. Yim, L. L. Schafer, Org.
Lett. 2013, 15, 2182.
The regioselective formation of the less substituted imine from an α-
substituted 2° alicyclic amine has for instance been achieved by the
carefully controlled deprotonation of N-Cl prolinol derivatives and
This article is protected by copyright. All rights reserved.