Scheme 1
Kinetically Controlled Enzyme-Catalyzed Synthesis
Use of penicillin acylase as catalyst in the synthetic
direction was first demonstrated in 1960 by Kaufman and
Bauer, who reported the E. coli penicillin acylase catalyzed
formation of penicillin G from 6-APA and phenylacetic
acid.10 Since then, many more examples have been published
in the scientific literature, of which those leading to
therapeutically useful products are summarized in Table 1.
The number of patent applications on the subject is at least
as large.
(9) Alfani, F.; Cantarella, M.; Cutarella, N.; Gallifuoco, A.; Golini, P.; Bianchi,
D. Biotechnol. Lett. 1997, 19, 175.
(10) Kaufman, W.; Bauer, K. Naturwissenschaften 1960, 47, 474.
(11) Kawamori, M.; Hashimoto, Y.; Katsumata, R.; Okachi, R.; Takayama, K.
Agric. Biol. Chem. 1983, 47, 2503.
(12) Takahashi, T.; Kato, K.; Yamazaki, Y.; Isono, M. Jpn. J. Antibiot. 1977,
30, S230.
(13) Kato, K.; Kawahara, K.; Takahashi, T.; Igarasi, S. Agric. Biol. Chem. 1980,
44, 821.
(14) Marconi, W.; Bartoli, F.; Cecere, F.; Galli, G.; Morisi, F. Agric. Biol. Chem.
1975, 39, 277.
(15) Okachi, R.; Hashimoto, Y.; Kawamori, M.; Katsumata, R.; Nara, T. Enzyme
Eng. 1982, 6, 81.
(16) Okachi, R.; Kato, F.; Miyamura, Y.; Nara, T. Agric. Biol. Chem. 1973, 37,
1953.
(17) Blinkovsky, A. M.; Markaryan, A. N. Enzyme Microb. Technol. 1993, 15,
965.
(18) Cole, M. Biochem. J. 1969, 115, 757.
(19) Kasche, V.; Haufler, U.; Riechmann, L. Ann. N.Y. Acad. Sci. 1984, 434,
99.
(20) Kasche, V.; Haufler, U.; Zo¨llner, R. Hoppe-Seyler’s Z. Physiol. Chem. 1984,
365, 1435.
(21) Kasche, V. Biotechnol. Lett. 1985, 7, 877.
(22) Boccu`, E.; Ebert, C.; Gardossi, L.; Gianferrara, T.; Zacchigna, M.; Linda,
P. Farmaco 1991, 46, 565.
(23) Ospina, S.; Barzana, E.; Ram´ırez, O. T.; Lo´pez-Mungu´ı, A. Enzyme Microb.
Technol. 1996, 19, 462.
â-subunit.7 In contrast with other serine proteases, penicillin
acylase does not appear to have a histidine residue in the
vicinity of the active site that may act as base in the catalytic
process. A more narrow substrate specificity is found in a
second class of enzymes, the R-amino acid ester hydrolases,
found in Acetobacter and Xanthomonas species.8 As the
name suggests, substrate specificity requires the presence of
an amino group R to the carboxylic acid function.
In the production of cephalosporin antibiotics, not only
is the above-mentioned penicillin G ring expansion strategy
applied but also the cephalosporin nucleus can be obtained
from the fermentation product cephalosporin C. However,
the application of enzyme catalysis in the hydrolysis of the
R-aminoadipyl side chain in cephalosporin C to give 7-ami-
nocephalosporanic acid (7-ACA) is less well developed since
extensive screening has not provided an enzyme capable of
hydrolyzing the R-aminoadipyl side chain. Presently, a two-
enzyme process can accommodate the removal of this side
(24) Kim, M. G.; Lee, S. B. J. Mol. Catal. B 1996, 1, 181.
(25) Kim, M. G.; Lee, S. B. J. Mol. Catal. B 1996, 1, 201.
(26) Nara, T.; Okachi, R.; Misawa, M. J. Antibiot. 1971, 24, 321.
(27) Okachi, R.; Misawa, M.; Deguchi, T.; Nara, T. Agric. Biol. Chem. 1972,
36, 1193.
(28) Shimizu, M.; Masuike, T.; Fujita, H.; Kimura, K.; Okachi, R.; Nara, T.
Agric. Biol. Chem. 1975, 39, 1225.
(29) Fuganti, C.; Rosell, C. M.; Rigoni, R.; Servi, S.; Tagliani, A.; Terreni, M.
Biotechnol. Lett. 1992, 14, 543.
(30) Baldaro, E. M.; Kostadinov, M.; Nikolov, A.; Tsoneva, N.; Petkov, N. Appl.
Biochem. Biotechnol. 1992, 33, 177.
(31) Fernandez-Lafuente, R.; Guisa´n, J. M.; Pregnolato, M.; Terreni, M.
Tetrahedron Lett. 1997, 38, 4693.
(32) Takahashi, T.; Yamazaki, Y.; Kato, K.; Isono, M. J. Am. Chem. Soc. 1972,
94, 4035.
(33) Takahashi, T.; Yamazaki, Y.; Kato, K. Biochem. J. 1974, 137, 497.
(34) Kim, I. H.; Nam, D. H.; Ryu, D. D. Y. Appl. Biochem. Biotechnol. 1983,
8, 195.
(35) Rhee, D. K.; Lee, S. B.; Rhee, J. S.; Ryu, D. D. Y.; Hospodka, J. Biotechnol.
Bioeng. 1980, 22, 1237.
(36) Choi, W. G.; Lee, S. B.; Ryu, D. D. Y. Biotechnol. Bioeng. 1981, 23, 361.
(37) Nam, D. H.; Kim, C.; Ryu, D. D. Y. Biotechnol. Bioeng. 1985, 27, 953.
(38) Hyun, C. K.; Kim, J. H.; Kim, Y. J. Biotechnol. Lett. 1989, 11, 537.
(39) Hyun, C. K.; Choi, J. H.; Kim, J. H.; Ryu, D. D. Y. Biotechnol. Bioeng.
1993, 41, 654.
(40) Dharmarajan, T. S.; Deshpande, J. V.; Divekar, K. Indian J. Pharm. Sci.
1994, 56, 126.
(41) Varga, M.; Nys, P. S.; Frank, J. Biocatalysis 1994, 11, 315.
(42) Konecny, J.; Sieber, M.; Schneider, A. Biotechnol. Lett. 1981, 3, 507.
(43) Fumian, C.; Lizhao, Z.; Wenzhen, H.; Min, W.; Zhenxiang, W. Acta
Microbiol. Sinica 1984, 24, 376.
chain.
A D-amino acid oxidase (EC 1.4.3.3) catalyzes
oxidative deamination, the resulting R-keto acid spontane-
ously loses carbon dioxide in the presence of hydrogen
peroxide, and finally the resulting glutaryl side chain is
hydrolyzed using a glutaryl acylase.9
(44) Maladkar, N. K. Enzyme Microb. Technol. 1994, 16, 715.
(45) Fujii, T.; Matsumoto, K.; Watanabe, T. Process Biochem. 1976, 21.
(46) Fernandez-Lafuente, R.; Rosell, C. M.; Piatkowska, B.; Guisa´n, J. M.
Enzyme Microb. Technol. 1996, 19, 9.
(7) Duggleby, H. J.; Tolley, S. P.; Hill, C. P.; Dodson, E. J.; Dodson, G.;
Moody, P. C. E. Nature 1995, 373, 264.
(47) Fernandez-Lafuente, R.; Alvaro, G.; Blanco, R. M.; Guisa´n, J. M. Appl.
Biochem. Biotechnol. 1991, 27, 277.
(8) Kato, K.; Kawahara, K.; Takahashi, T.; Kakinuma, A. Agric. Biol. Chem.
1980, 44, 1075.
(48) Fernandez-Lafuente, R.; Rosell, C. M.; Guisa´n, J. M. Biotechnol. Appl.
Biochem. 1996, 24, 139.
Vol. 2, No. 2, 1998 / Organic Process Research & Development
•
129