ROSTAMNIA AND JAFARI
5
unsubstituted aminopyridines. On the basis of these results,
to extend the scope and generality of this method, the 3‐
GBB reaction of substituted aldehydes was also investigated.
The results obtained indicated that NH2‐MIL‐53(Al) is a suit-
able reaction inductor for 3‐GBB condensation in solvent‐
free conditions.
When reactions involve the use of solid catalysts, the
reusability and recovery of the catalysts are important factors.
So, in the next step we investigated the recyclability of NH2‐
MIL‐53(Al). After completion of reaction, by increasing
dichloromethane and centrifugation the catalyst can be sepa-
rated from the reaction mixture. For the model reaction, it
was found that NH2‐MIL‐53(Al) could be recovered and
reused in five reaction cycles (Figure 3b), giving a total
TON of 455 (Table 3).
A proposed mechanism (pathways A and B) for this reac-
tion is shown in Scheme 2. Although this mechanism has not
been exactly demonstrated by experiment, but based on
literature reports of catalytic applications of NH2‐MIL‐
53(Al),[1–3,8–10] the most probable mechanisms for the syn-
thesis of 3‐aminoimidazo[1,2‐a]pyridines 4 are outlined in
Scheme 2 incorporating the roles of the Lewis acidic and
amine‐based organocatalytic pathways in activating the alde-
hydes and intermediate imines.
SCHEME 3 Test for chemoselectivity and size selectivity of the MOF
This indicates that there is some amount of reactivity occur-
ring outside of the framework or via defects present in the
crystal domains which facilitate guest diffusion.[8a,8c]
4
| CONCLUSIONS
We successfully synthesized NH2‐MIL‐53(Al) and utilized
it for the synthesis of 3‐aminoimidazo[1,2‐a]pyridines. The
advantage of this MOF‐catalysed reaction is that it can be
carried out under solvent‐free conditions and in a short
reaction time. Additionally, using this method, a small
amount of catalyst was used and facilely recycled, and espe-
cially the use of toxic organic solvents in the reaction was
avoided, which provides a green and effective method for
3‐GBB condensation.
To investigate the chemoselectivity and size selectivity of
the our MOF, the 3‐GBB reaction was performed using an
equimolecular mixture of benzaldehyde (1 mmol) and p‐
nitrobenzaldehyde (1 mmol) under the same reaction condi-
tions as described in Section 2. After 70 min of reaction,
the yield of 4a was 44%, whereas 4b was 11% (Scheme 3).
REFERENCES
[1] a) A. Gueiffier, S. Mavel, M. Lhassani, A. Elhakmaoui, R. Snoeck,
G. Andrei, O. Chavignon, J. C. Teulade, M. Witvrouw, J. Balzarini, E. De‐
Clercq, J. P. Chapat, J. Med. Chem. 1998, 41, 5108. b) L. Almirante, L. Polo,
A. Mugnaini, E. Provinciali, P. Rugarli, A. Biancotti, A. Gamba, W.
Murmann, J. Med. Chem. 1965, 8, 305. c) K. S. Gudmundsson, J. D.
Williams, J. C. Drach, L. B. Townsend, J. Med. Chem. 2003, 46, 1449.
TABLE 3 Recyclability and TON study for the synthesis of 4a
Runa
1
2
3
4
5
86b
[2] a) M. Adib, M. Mahdavi, M. Alizadeh, P. Mirzaei, Tetrahedron Lett. 2007,
48, 7263. b) S. Rostamnia, K. Lamei, M. Mohammadquli, M. Sheykhan,
A. Heydari, Tetrahedron Lett. 2012, 53, 5257 .and references therein c) S.
Rostamnia, A. Hassankhani, RSC Adv. 2013, 3, 18626.
Yield 4a (%)
95
93
92
89
TON =455
aTime of the reaction was 3 h.
bAfter 5 h.
[3] a) K. Groebke, L. Weber, F. Mehlin, Synlett 1998, 661. b) H. Bienayme,
K. Bouzid., Angew. Chem. Int. Ed. 1998, 37, 2234. c) S. Rostamnia, RSC
Adv. 2015, 5, 97044.
[4] a) J. J. Chen, A. Golebiowski, J. Clenaghan, S. R. Klopfenstein, L. West, Tet-
rahedron Lett. 2001, 42, 2269. b) A. Shaabani, E. Soleimani, A. Maleki, J.
Moghimi‐Rad, Synth. Commun. 2008, 38, 1090. c) S. K. Guchhait, C.
Maadan, Synlett 2009, 628. d) A. L. Rousseau, P. Matlaba, C. J. Parkinson,
Tetrahedron Lett. 2007, 48, 4079.
[5] a) C. M. Crudden, M. Sateesh, R. Lewis, J. Am. Chem. Soc. 2005, 127,
10045. b) B. W. Glasspoole, J. D. Webb, C. M. Crudden, J. Catal. 2009,
265, 148. c) C. M. Crudden, K. McEleney, S. L. MacQuarrie, A. Blanc,
M. Sateesh, J. D. Webb, Pure Appl. Chem. 2007, 79, 247. d) S. Rostamnia,
E. Doustkhah, RSC Adv. 2014, 4, 28238. e) S. Rostamnia, F. Pourhassan,
Chin. Chem. Lett. 2013, 24, 401.
[6] a) S. Rostamnia, H. Xin, X. Liu, K. Lamei, J. Mol. Catal. A 2013, 374–375,
85. b) S. Rostamnia, H. Xin. J. Mol. Liq. 2014, 195, 30. c) S. Rostamnia, X.
Liu, D. Zheng. J. Colloid Interface Sci. 2014, 432, 86. d) S. Rostamnia, E.
Doustkhah, Tetrahedron Lett. 2014, 55, 2508. e) S. Rostamnia, E.
Doustkhah, A. Nuri, J. Fluorine, Chem. 2014, 153, 1. f) S. Rostamnia, H.
Xin, Appl. Organometal. Chem. 2013, 27, 348. g) S. Rostamnia,
A. Zabardasti, J. Fluorine, Chem. 2013, 144, 69.
SCHEME 2 Plausible mechanisms (pathways A and B) for the 3‐GBB reac-
tion using MOF