Cp*M(κ2-P,S) Complexes
A R T I C L E S
mmol, 94%). Anal. Calcd for C25H35ClRhPS: C, 55.92; H, 6.57;
1H, Rh-H). 13C NMR data on the basis of 1H-13C HMBC/HSQC
experiments (THF-d8): δ 135.0 (Ar-C), 134.7 (Ar-C), 131.7
(Ar-C), 129.1 (Ar-C), 129.0 (Ar-C), 128.8 (Ar-C), 126.5 (C5
or C6), 123.9 (C4 or C7), 121.6 (C5 or C6), 117.5 (C4 or C7),
42.8 (C1), 29.1 (P(CHMe2)), 23.9 (P(CHMe2)), 19.3 (P(CHMeMe)),
19.2 (P(CHMeMe)), 18.8 (P(CHMeMe)), 18.6 (P(CHMeMe)), 10.5
1
N, 0.00. Found: C, 55.88; H, 6.52; N, <0.3. H NMR (CDCl3): δ
7.19 (d, 3JHH ) 7.5 Hz, 1H, C4-H or C7-H), 7.13 (t, 3JHH ) 8.0
3
Hz, 1H, C5-H or C6-H), 7.06 (d, JHH ) 7.5 Hz, 1H, C4-H or
3
C7-H), 6.96 (t, JHH ) 7.5 Hz, 1H, C5-H or C6-H), 3.63 (m,
1H, C1(Ha)(Hb)), 3.54 (m, 1H, C1(Ha)(Hb)), 3.19 (m, 1H, P(CH-
MeaMeb)), 2.30 (m, 1H, P(CHMecMed)), 1.77 (d, JPC ) 3.0 Hz,
1
(C5Me5). 31P{1H} NMR (THF-d8): δ 77.4 (d, JRhP ) 143.7 Hz).
3
3
15H, C5Me5), 1.51 (d of d, JPH ) 15.0 Hz, JHH ) 7.0 Hz, 3H,
P(CHMeaMeb)), 1.45-1.37 (m, 6H, P(CHMeaMeb) and P(CHMec-
Synthesis of 11. Method A: To a magnetically stirred solution
of 3 · CH3CN (0.066 g, 0.10 mmol) in THF (2 mL) was added
Ph2SiH2 (19 µL, 0.10 mmol), which effected an immediate color
change from dark red to orange. The reaction mixture was
magnetically stirred at ambient temperature for 2 h, at which time
31P NMR data collected on an aliquot of the reaction mixture
indicated the complete consumption of 3·CH3CN and the appear-
ance of two new phosphorus-containing products (11a,b). The
solvent was removed in Vacuo, affording an orange residue that
was extracted into pentane (3 mL). Removal of the pentane afforded
11 as a mixture of diastereomers (11a,b) in a 3:1 ratio (0.049 g,
0.064 mmol, 64%). Method B: A mixture of 1 (0.053 g, 0.085
mmol) and Ph2SiH2 (16 µL, 0.085 mmol) in THF (2 mL) was cooled
to -35 °C followed by the dropwise addition of a solution of
NaN(SiMe3)2 (0.016 g, 0.085 mmol) in THF (1 mL), which caused
a rapid color change from orange to dark brown followed by an
immediate return to orange. The reaction mixture was magnetically
stirred and allowed to warm to ambient temperature followed by
magnetic stirring for 3 h, at which time 31P NMR data collected
on an aliquot of the reaction mixture indicated complete consump-
tion of 1 and the formation of 11a,b. The solvent was removed in
Vacuo, affording an orange residue that was extracted into pentane
(3 mL). Removal of the pentane afforded 11 as a mixture of
diastereomers (11a,b; similar to that observed by use of Method
A) in a 4:1 ratio (0.052 g, 0.067 mmol, 79%). Anal. Calcd for
C37H46IrPSSi: C, 57.41; H, 5.99; N, 0.00. Found: C, 57.09; H, 6.20;
N, <0.3. Diastereomer 11a: 1H NMR (C6D6): δ 7.55 (m, 2H,
Ar-H), 7.38 (m, 2H, Ar-H), 7.21-6.99 (m, 8H, Ar-H), 6.88 (m,
3
3
Med)), 1.10 (d of d, JPH ) 16.0 Hz, JHH ) 7.0 Hz, 3H,
P(CHMecMed)). 13C{1H} NMR (CDCl3): δ 179.5 (d, JPC ) 24.3
2
Hz, C2), 147.7 (d, JPC ) 6.9 Hz, C3a or C7a), 145.8 (C3a or C7a),
126.2 (C5 or C6), 123.5 (C4 or C7), 121.9 (C5 or C6), 117.6 (C4
or C7), 98.8 (d of d, 1JRhC ) 5.9 Hz, 2JPC ) 3.0 Hz, C5Me5), 43.1
(d of d, 3JPC ) 11.8 Hz, 3JRhC ) 1.4 Hz, C1), 29.4 (d of d, 1JPC
)
19.6 Hz, 2JRhC ) 1.4 Hz, P(CHMecMed)), 26.4 (d, 1JPC ) 28.9 Hz,
2
P(CHMeaMeb)), 20.5 (P(CHMeaMeb)), 20.2 (d, JPC ) 7.5 Hz,
2
P(CHMeaMeb)), 19.7 (d, JPC ) 6.8 Hz, P(CHMecMed)), 18.7 (d,
2JPC ) 2.1 Hz, P(CHMecMed)), 9.6 (C5Me5). 31P{1H} NMR
1
(CDCl3): δ 65.7 (d, JRhP ) 141.7 Hz).
Formation of [9]+B(C6F5)4-. To a magnetically stirred solution
of 8 (0.023 g, 0.042 mmol) in CD2Cl2 (2 mL) was added solid
LiB(C6F5)4 ·2.5Et2O (0.037 g, 0.042 mmol), which caused an
immediate color change of the reaction mixture to dark green. After
0.25 h, 31P NMR analysis of the reaction mixture revealed the
complete consumption of 8 and the presence of a major phosphorus-
containing product (ca. 75% of mixture, 31P NMR) that we assign
as [9]+B(C6F5)4-. Although we have thus far not been able to
isolate [9]+B(C6F5)4- in analytically pure form due to the apparent
1
instability of this complex in solution and upon workup, H and
13C NMR characterization data obtained in situ are consistent with
the Cs-symmetric nature of the target complex. Alternative reactions
conducted in THF-d8 afforded red reaction mixtures in which the
-
transformation of 8 into [9]+B(C6F5)4 in a similar fashion was
observed by use of NMR methods. 1H NMR (CD2Cl2): δ 7.47 (d,
3JHH ) 7.5 Hz, 1H, C4-H or C7-H), 7.36-7.29 (m, 2H, Ar-H),
7.25 (d of t, 3JHH ) 7.0 Hz, 4JHH ) 1.5 Hz, 1H, C5-H or C6-H),
3.89 (d, 4JPH ) 2.0 Hz, 2H, C1(H)2), 2.96 (m, 2H, P(CHMeaMeb)2),
3
1H, Ar-H), 6.82 (m, 1H, Ar-H), 5.66 (d, JHH ) 1.0 Hz, 1H,
Si-H), 4.18 (m, 1H, C1-H), 2.60 (m, 1H, P(CHMeaMeb)),
1.86-1.79 (m, 16H, C5Me5 and P(CHMecMed)), 1.06 (d of d, 3JPH
) 12.5 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMecMed)), 0.91 (d of d, 3JPH
) 16.0 Hz, 3JHH ) 6.5 Hz, 3H, P(CHMeaMeb)), 0.84 (d of d, 3JPH
) 17.5 Hz, 3JHH ) 6.5 Hz, 3H, P(CHMeaMeb)), 0.37 (d of d, 3JPH
4
3
1.86 (d, JPH ) 2.0 Hz, 15H, C5Me5), 1.32 (d of d, JPH ) 18.5
Hz, 3JHH ) 7.0 Hz, P(CHMeaMeb)2), 1.22 (d of d, 3JPH ) 16.5 Hz,
3JHH ) 7.0 Hz, P(CHMeaMeb)2). 13C{1H} NMR (CD2Cl2): δ 175.0
(C2), 149.5 (C3a or C7a), 141.4 (C3a or C7a), 131.7 (C3), 127.2
(Ar-C), 125.3 (C5 or C6), 125.1 (C4 or C7), 120.4 (Ar-C), 102.6
(d, 1JRhC ) 5.2 Hz, C5Me5), 42.3 (d, 3JPC ) 12.8 Hz, C1), 24.9 (d,
1JPC ) 24.0 Hz, P(CHMeaMeb)2), 18.6 (P(CHMeaMeb)2), 18.4 (d,
2JPC ) 4.0 Hz, P(CHMeaMeb)2), 10.9 (C5Me5). 31P{1H} NMR
) 17.0 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMecMed)), -15.81 (d, 2JPH
)
)
2
37.0 Hz, 1H, Ir-H). 13C{1H} NMR (C6D6): δ 182.8 (d, JPC
25.5 Hz, C2), 148.5 (d, 2JPC ) 7.5 Hz, C3a or C7a), 144.5 (d, 2JPC
) 4.9 Hz, C3a or C7a), 135.7 (Ar-C), 135.2 (Ar-C), 132.9 (SiPh2-
quaternary), 130.8 (SiPh2-quaternary), 129.0 (Ar-C), 128.7 (Ar-C),
127.1 (Ar-C), 127.0 (d, 1JPC ) 23.3 Hz, C3), 126.9 (Ar-C), 124.8
(Ar-C), 123.8 (Ar-C), 119.7 (Ar-C), 116.2 (Ar-C), 91.4 (d, 2JPC
1
(CD2Cl2): δ 69.3 (d, JRhP ) 172.0 Hz).
Formation of 10. Treatment of a magnetically stirred THF-d8
-
3
1
solution of [9]+B(C6F5)4 (0.042 mmol scale; prepared in situ as
) 3.0 Hz, C5Me5), 44.2 (d, JPC ) 9.8 Hz, C1), 27.8 (d, JPC )
outlined above) with Ph2SiH2 (7.8 µL, 0.042 mmol) caused an
immediate color change to dark orange. After 0.25 h, 31P NMR
analysis of the reaction mixture revealed the complete consumption
26.3 Hz, P(CHMecMed)), 22.4 (d, 1JPC ) 42.8 Hz, P(CHMeaMeb)),
18.3 (P(CHMeaMeb)), 17.9 (d, 2JPC ) 5.9 Hz, P(CHMecMed)), 17.8
2
2
(d, JPC ) 4.8 Hz, P(CHMeaMeb)), 16.6 (d, JPC ) 4.3 Hz,
P(CHMecMed)), 9.3 (C5Me5). 31P{1H} NMR (C6D6): δ 42.3. 29Si
NMR (C6D6): δ 89.1. Diastereomer 11b: 1H NMR (C6D6): δ
7.59-7.57 (m, 2H, Ar-H), 7.37-7.35 (m, 2H, Ar-H), 7.13-6.99
-
of [9]+B(C6F5)4 and the presence of a major phosphorus-
containing product (ca. 80% of mixture, 31P NMR) that we assign
as 10. Although we have thus far not been able to isolate 10 in
analytically pure form due to the apparent instability of this complex
in solution and upon workup, NMR characterization data obtained
in situ are consistent with the identity of 10 as being the Rh
analogue of the isolable Ir complex 6a. 1H NMR (THF-d8): δ
3
(m, 9H, Ar-H), 6.84-6.81 (m, 1H, Ar-H), 5.72 (d, JHH ) 1.0
Hz, 1H, Si-H), 4.21 (m, 1H, C1-H), 2.48 (m, 1H, P(CHMeaMeb)),
1.99 (m, 1H, P(CHMecMed)), 1.79 (s, 15H, C5Me5), 1.19 (d of d,
3JPH ) 12.5 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMecMed)), 0.99 (d of d,
3JPH ) 16.0 Hz, 3JHH ) 7.0 Hz, 3H, P(CHMecMed)), 0.86 (d of d,
3JPH ) 13.0 Hz, 3JHH ) 6.5 Hz, 3H, P(CHMeaMeb)), 0.41 (d of d,
7.78-7.73 (m, Ar-H), 7.60-7.55 (m, 2H, Ar-H), 7.54-7.49 (m,
3
Ar-H), 7.16-7.10 (m, 2H, C4-H and C7-H), 7.08 (t, JHH
)
7.0 Hz, 1H, C5-H or C6-H), 6.87 (t, 3JHH ) 7.5 Hz, 1H, C5-H
or C6-H), 5.79 (s, 1H, S--H), 3.42 (m, 1H, C1(Ha)(Hb)), 3.33
(m, 1H, C1(Ha)(Hb)), 2.99 (m, 1H, P(CHMe2)), 2.43 (m, 1H,
3JPH ) 16.0 Hz, JHH ) 7.0 Hz, 3H, P(CHMeaMeb)), -16.04 (d,
3
2JPH ) 37.5 Hz, 1H, Ir-H). 13C{1H} NMR (C6D6): δ 181.4 (d,
2JPC ) 25.2 Hz, C2), 148.3 (d, JPC ) 7.5 Hz, C3a or C7a), 144.0
(d, JPC ) 4.7 Hz, C3a or C7a), 135.6 (Ar-C), 135.2 (Ar-C), 132.5
(SiPh-quaternary), 130.3 (SiPh-quaternary), 128.8 (Ar-C), 128.7
3
P(CHMe2)), 1.99 (m, 15H, C5Me5), 1.41 (d of d, JPH ) 12.0 Hz,
3JHH ) 7.0 Hz, P(CHMeMe)), 1.20 (d of d, JPH ) 14.5 Hz, JHH
3
3
) 7.5 Hz, P(CHMeMe)), 1.17 (d of d, 3JPH ) 11.5 Hz, 3JHH ) 7.0
(Ar-C), 127.3 (d, JPC ) 25.9 Hz, C3), 127.0 (Ar-C), 126.6
1
3
3
Hz, P(CHMeMe)), 1.02 (d of d, JPH ) 16.5 Hz, JHH ) 7.0 Hz,
(Ar-C), 124.6 (Ar-C), 123.5 (Ar-C), 119.8 (Ar-C), 116.4
1
2
2
3
P(CHMeMe)), -12.81 (d of d, JRhP ) 45.0 Hz, JPH ) 20.0 Hz,
(Ar-C), 91.4 (d, JPC ) 3.0 Hz, C5Me5), 43.9 (d, JPC ) 9.7 Hz,
9
J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008 16405