Y. Lv et al. / Spectrochimica Acta Part A 72 (2009) 22–25
25
4. Conclusion
412) and the emphasis research fund for Jiamusi University
(Szj2008-018).
Eu3+ and Tb3+ of 3,5-dinitrobenzoic acid and 1,10-phenanthro-
line ternary complexes had been synthesized and characterized.
The experiment results showed that the RE3+ absorbs the energy
and the energy was transferred to ligands, then the ligands emit
typical blue luminescence.
References
[1] J. Kide, H. Hayase, K. Hongawa, Appl. Phys. Lett. 65 (1994) 2124–2128.
[2] Q. Wang, B. Yan, X. Zhang, J. Photochem. Photobiol. A: Chem. 174 (2005)
119–124.
A novel electroluminescence device with organic–inorganic
structure was fabricated based on layered optimization scheme.
Nano-TiO2 was utilized as electron function layer in the
organic–inorganic combined structure, so the excitation of lan-
thanide can be carried out in a new route, which means electrons
directly impact excitation the lanthanide ions through resonant
energy transfer. It was found that the combined structural device
may be an effective way to improve the electro-luminescence inten-
sity of rare earth complex. Thus, it can be expected that nano-TiO2
material play an important role in improving electroluminescence
intensity of lanthanide complex.
[3] H. Miki, I. Ayumi, K. Shinobu, J. Photochem. Photobiol. A: Chem. 178 (2006)
220–224.
[4] H. Song, J. Wang, J. Lumin. 118 (2006) 220–226.
[5] M. Norio, N. Rei, M. Jun, A. Tomita, J. Lumin. 107 (2004) 256–260.
[6] G. Zhong, Y. Wang, C. Wang, B. Pu, J. Lumin. 99 (2002) 213–222.
[7] T. Kiyomi, G. Norihiko, K. Masao, J. Photochem. Photobiol. A: Chem. 169 (2005)
109–114.
[8] K.K. Mahato, S.B. Rai, A. Rai, Spectrochim. Acta Part A 60 (2004) 979–985.
[9] Y. Liu, C. Ye, G. Qian, J. Qiu, M. Wang, J. Lumin. 118 (2006) 158–164.
[10] H. Shen, Z. Xu, D. Tao, J. Rare Earth 21 (2003) 519–523.
[11] H. Cao, X. Cao, C. Huang, Appl. Surf. Sci. 161 (2000) 443–447.
[12] Y. Wang, F. Teng, Z. Xu, Y. Hou, Appl. Surf. Sci. 236 (2004) 251–255.
[13] Y. Fu, J. Zhang, Z. Huang, X. Wang, Y. Lv, W. Cao, J. Photochem. Photobiol. A:
Chem. 197 (2008) 329–334.
[14] S. Elias, L. Panagiotis, Chem. Phys. Lett. 417 (2006) 406–411.
[15] Y. Sun, H. Jiu, D. Zhang, J. Gao, Chem. Phys. Lett. 410 (2005) 204–209.
[16] J. Kido, Y. Okamoto, Chem. Rev. 102 (2002) 2357–2368.
[17] S. Pilkenton, S.-J. Hwang, D. Raftery, J. Phys. Chem. B 103 (1999) 11152–11156.
[18] Y. Lv, J. Zhang, W. Cao, F. Zhang, Z. Xu, J. Photochem. Photobiol. A: Chem. 188
(2007) 155–160.
Acknowledgments
This work was supported by research fund for the Doctoral
Program of Higher Education (No. 20050010014), the National
Development Project of High Technology (Project 863) (2006AA03Z
[19] Y. Lv, J. Zhang, W. Cao, L. Song, Z. Xu, Mater. Lett. 62 (6/7) (2008) 1107–1109.
[20] Y. Lv, J. Zhang, W. Cao, Y. Fu, J. Alloys Compd. 462 (2008)153–156.