Organic Letters
Letter
7003−7007. (b) Geffe, M.; Opatz, T. Org. Lett. 2014, 16, 5282−5285.
(c) Verzijl, G. K. M.; de Vries, A. H. M.; de Vries, J. G.; Kapitan, P.; Dax,
T.; Helms, M.; Nazir, Z.; Skranc, W.; Imboden, C.; Stichler, J.; Ward, R.
A.; Abele, S.; Lefort, L. Org. Process Res. Dev. 2013, 17, 1531−1539.
(d) Chang, M.; Li, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50,
10679−10681.
Scheme 8. Three Controlled Experiments and Results
(3) For selected recent references, see: (a) Dasgupta, S.; Liu, J.;
Shoffler, C. A.; Yap, G. P. A.; Watson, M. P. Org. Lett. 2016, 18, 6006−
6009. (b) Luu, H.-T.; Wiesler, S.; Frey, G.; Streuff, J. Org. Lett. 2015, 17,
2478−2481.
(4) For selected recent references, see: (a) Jarvis, C. L.; Jemal, N. M.;
Knapp, S.; Seidel, D. Org. Biomol. Chem. 2018, 16, 4231−4235.
(b) Tan, W. W.; Yoshikai, N. Chem. Sci. 2015, 6, 6448−6455.
(c) Unsworth, W. P.; Coulthard, G.; Kitsiou, C.; Taylor, R. J. K. J. Org.
Chem. 2014, 79, 1368−1376. (d) Eschenbrenner-Lux, V.; Kuchler, P.;
̈
Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53,
2134−2137.
(5) For selected reviews, see: (a) Chrzanowska, M.; Grajewska, A.;
Rozwadowska, M. D. Chem. Rev. 2016, 116, 12369−12465. (b) Heravi,
M. M.; Nazari, N. Curr. Org. Chem. 2015, 19, 2358−2408.
(6) (a) Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 74−
150 (a review) . (b) Bischler, A.; Napieralski, B. Ber. Dtsch. Chem. Ges.
1893, 26, 1903−1908.
In conclusion, a new method for the Bischler−Napieralski-
type synthesis of 3,4-dihydroisoquinolines was developed by a
Tf2O-promoted tandem annulation from phenylethanols and
nitriles. Its success is mainly due to the formation of the stable
phenonium ions, by which the N-alkylation of nitriles was
achieved efficiently to give the key intermediate N-phenylethyl
nitrilium triflate. The method has two distinctive advantages: (a)
it changes the Bischler−Napieralski reaction from a linear
synthesis into a convergent synthesis and (b) it changes the
substrates from N-phenylethyl amides into phenylethanols.
Since both advantages practically promote the substrate and
product diversities of the Bischler−Napieralski reaction, we may
expect that this method will have widespread applications in
organic synthesis.
(7) (a) Fodor, G.; Nagubandi, S. Tetrahedron 1980, 36, 1279−1300 (a
review) . (b) Fodor, G.; Gal, J.; Phillips, B. A. Angew. Chem., Int. Ed.
Engl. 1972, 11, 919−920.
(8) For selected reviews, see: (a) van Dijk, T.; Slootweg, J. C.;
Lammertsma, K. Org. Biomol. Chem. 2017, 15, 10134−10144.
(b) Hegarty, A. F. Acc. Chem. Res. 1980, 13, 448−454.
(9) Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485−3488.
(10) In the B−N reaction, most N-arylethyl amides 2 are prepared by
acylation of the corresponding arylethylamines. Since most arylethyl-
amines are not commercially available, they need to be synthesized also.
(11) Lora-Tamayo, M.; Madron
1960, 93, 289−297.
ero, R.; Munoz, G. G. Chem. Ber.
̃ ̃
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(12) Van Binst, G.; Baert, R. B. J. Heterocycl. Chem. 1975, 12, 1165−
1174.
(13) Ho, T.-L.; Chein, R.-J. J. Org. Chem. 2004, 69, 591−592.
(14) (a) Prakash, G. K. S.; Reddy, V. P. In Carbocation Chemistry;
Olah, G. A., Prakash, G. K. S., Eds.; John Wiley & Sons, Inc.: New York,
2004; pp73−101. (b) Olah, G. A.; Porter, R. D. J. Am. Chem. Soc. 1970,
92, 7627−7629. (c) Cram, D. J. J. Am. Chem. Soc. 1949, 71, 3863−3870.
(15) For a review, see: Tsuji, Y.; Richard, J. P. J. Phys. Org. Chem. 2016,
29, 557−564.
Experiments, characterization, and H and 13C NMR
spectra for all products 1aa-1an, 1ba-1bh, 1ca-1ja, 11, 14,
and the mixture of 15/16 (1:1) (PDF)
1
AUTHOR INFORMATION
Corresponding Authors
■
(16) (a) Rong, M. K.; van Duin, K.; van Dijk, T.; de Pater, J. J. M.;
Deelman, B.-J.; Nieger, M.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma,
K. Organometallics 2017, 36, 1079−1090. (b) Liu, Y.; Yi, X.; Luo, X.; Xi,
C. J. Org. Chem. 2017, 82, 11391−11398. (c) Yan, X.; Zou, S.; Zhao, P.;
Xi, C. Chem. Commun. 2014, 50, 2775−2777. (d) Hodges, L. M.;
Gonzalez, J.; Koontz, J. I.; Myers, W. H.; Harman, W. D. J. Org. Chem.
1995, 60, 2125−2146. (e) Booth, B. L.; Jibodu, K. O.; Proenca, M. F. J.
Chem. Soc., Chem. Commun. 1980, 1151−1153.
ORCID
Notes
(17) (a) Liu, S.; Zeng, X.; Hammond, G. B.; Xu, B. Adv. Synth. Catal.
2018, 360, 3667−3671. (b) Jin, L.; Hao, W.; Xu, J.; Sun, N.; Hu, B.;
Shen, Z.; Mo, W.; Hu, X. Chem. Commun. 2017, 53, 4124−4127.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (Nos. 21472107 and 21372142).
̌
́
(c) Seki, H.; Pellett, S.; Silhar, P.; Stowe, G. N.; Blanco, B.; Lardy, M. A.;
Johnson, E. A.; Janda, K. D. Bioorg. Med. Chem. 2014, 22, 1208−1217.
(d) Dang, H.; Mailig, M.; Lalic, G. Angew. Chem., Int. Ed. 2014, 53,
6473−6476. (e) Wang, Y.; Frattarelli, D. L.; Facchetti, A.; Cariati, E.;
Tordin, E.; Ugo, R.; Zuccaccia, C.; Macchioni, A.; Wegener, S. L.; Stern,
C. L.; Ratner, M. A.; Marks, T. J. J. Phys. Chem. C 2008, 112, 8005−
8015.
■
REFERENCES
■
(1) For selected recent references, see: (a) Zheng, B.; Trieu, T. H.; Li,
F.-L.; Zhu, X.-L.; He, Y.-G.; Fan, Q.-Q.; Shi, X.-X. ACS Omega 2018, 3,
8243−8252. (b) Tanabe, G.; Sugano, Y.; Shirato, M.; Sonoda, N.;
Tsutsui, N.; Morikawa, T.; Ninomiya, K.; Masayuki, N.; Yoshikawa, M.;
Muraoka, O. J. Nat. Prod. 2015, 78, 1536−1542. (c) Chaitanya, M.;
Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960−4963. (d) Awuah,
E.; Capretta, A. J. Org. Chem. 2010, 75, 5627−5634.
(18) Booth, B. L.; Haszeldine, R. N.; Laali, K. J. Chem. Soc., Perkin
Trans. 1 1980, 2887−2893.
(19) (a) Larsen, R. D.; Reamer, R. A.; Corley, E. G.; Davis, P.;
Grabowski, E. J. J.; Reider, P. J.; Shinkai, I. J. Org. Chem. 1991, 56,
6034−6038. (b) Nagubandi, S.; Fodor, G. J. Heterocycl. Chem. 1980, 17,
1457−1463.
(2) For selected recent references, see: (a) Zhu, J.; Tan, H.; Yang, L.;
Dai, Z.; Zhu, L.; Ma, H.; Deng, Z.; Tian, Z.; Qu, X. ACS Catal. 2017, 7,
D
Org. Lett. XXXX, XXX, XXX−XXX