I. Kim et al. / Tetrahedron Letters 49 (2008) 6579–6584
6583
Kizirgil, A.; Kazaz, C. Eur. J. Med. Chem. 2008, 43, 300; (c) Filzen, G. F.; Bratton,
L.; Cheng, X.-M.; Erasga, N.; Geyer, A.; Lee, C.; Lu, G.; Pulaski, J.; Sorenson, R. J.;
Unangst, P. C.; Trivedi, B. K.; Xu, X. Bioorg. Med. Chem. Lett. 2007, 17, 3630; (d)
Salih, K. S. M.; Ayoub, M. T.; Saadeh, H. A.; Al-Masoudi, N. A.; Mubarak, M. S.
Heterocycles 2007, 717, 1577; (e) Dixit, M.; Tripathi, B. K.; Tamrakar, A. K.;
Srivastava, A. K.; Kumar, B.; Goel, A. Bioorg. Med. Chem. 2007, 15, 727.
6. For recent examples, see: (a) Huang, X.-C.; Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Wang,
F.; Li, J.-H. Org. Lett. 2008, 10, 1525; (b) Fürstner, A.; Davies, P. W. J. Am. Chem.
Soc. 2005, 127, 15024; (c) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70,
10292; (d) Kraus, G. A.; Schroeder, J. D. Synlett 2005, 2504; (e) Lu, K.; Luo, T.;
Xiang, Z.; You, Z.; Fathi, R.; Chen, J.; Yang, Z. J. Comb. Chem. 2005, 7, 958; (f)
Kraus, G. A.; Kim, I. Org. Lett. 2003, 5, 1191; g Nicolaou, K. C.; Snyder, S. A.; Bigot,
A.; Pfefferkorn, J. Angew. Chem., Int. Ed. 2000, 39, 1093.
7. Chen, Z.; Wang, X.; Lu, W.; Yu, J. Synlett 1991, 121.
8. Although BBr3 was used to make benzofurans via demethylation and
cyclodehydration, only four examples are shown and the yields are low.
Dupont, R.; Cotelle, P. Synthesis 1999, 1651.
9. General procedure: To a stirred solution of 4 (0.4 mmol) in CH2Cl2 (3 mL) was
added BCl3 (1.2 equiv, 1.0 M solution in CH2Cl2) at ꢀ78 °C. After being stirred at
rt for 1 h, the reaction mixture was quenched with cold H2O. The mixture was
extracted with CH2Cl2 two times. The combined organic layers were dried over
MgSO4, and concentrated under reduced pressure. The resulting residue was
purified by silica gel column chromatography to give the benzofuran or
naphthofuran 5.
10. Spectral data: 5a: 1H NMR (300 MHz, CDCl3) d 7.84 (dd, J = 7.6, 1.7 Hz, 1H), 7.78
(s, 1H), 7.64 (d, J = 7.3 Hz, 2H), 7.54 (dd, J = 7.6, 1.2 Hz, 1H), 7.47 (t, J = 7.5 Hz,
2H), 7.40–7.26 (m, 3H); 13C NMR (75 MHz, CDCl3) d 155.8, 141.3, 132.1, 129.0,
127.5, 127.4, 126.5, 124.6, 123.0, 122.3, 120.4, 111.8; HRMS (EI) calcd for
[C14H10O]+: m/z 194.0732, found: 194.0736. Compound 5b: 1H NMR (300 MHz,
CDCl3) d 7.79 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.50–7.32 (m, 4H), 7.23 (t,
J = 7.9 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 4.04 (s, 3H); 13C NMR (75 MHz, CDCl3) d
145.7, 145.2, 141.4, 132.0, 128.9, 128.2, 127.5, 127.4, 123.7, 122.7, 122.7, 106.6,
56.1; HRMS (EI) calcd for [C15H12O2]+: m/z 224.0837, found: 224.0835.
Compound 5c: 1H NMR (300 MHz, CDCl3) d 7.68 (s, 1H), 7.67 (d, J = 8.6 Hz,
1H), 7.61 (dd, J = 8.3, 1.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 2H), 7.37–7.29 (m, 1H), 7.05
(d, J = 2.2 Hz, 1H), 6.93 (dd, J = 8.7, 2.3 Hz, 1H), 3.82 (s, 3H); 13C NMR (75 MHz,
CDCl3) d 158.2, 156.9, 140.4, 132.3, 129.0, 127.4, 127.3, 122.1, 120.6, 119.8,
112.1, 96.2, 55.7; HRMS (EI) calcd for [C15H12O2]+: m/z 224.0837, found:
224.0833. Compound 5d: 1H NMR (300 MHz, CDCl3) d 7.75 (s, 1H), 7.64–7.58
(m, 2H), 7.52–7.41 (m, 3H), 7.40–7.33 (m, 1H), 7.26 (d, J = 2.6 Hz, 1H), 6.96 (dd,
J = 8.9, 2.6 Hz, 1H), 3.85 (s, 3H); 13C NMR (75 MHz, CDCl3) d 156.3, 150.8, 142.2,
132.2, 129.0, 127.5, 127.4, 127.0, 122.4, 113.3, 112.2, 102.9, 56.0; HRMS (EI)
calcd for [C15H12O2]+: m/z 224.0837, found: 224.0839. Compound 5e: 1H NMR
(300 MHz, CDCl3) d 7.94 (s, 1H), 7.73 (dd, J = 7.4, 1.8 Hz, 1H), 7.63 (dd, J = 7.5,
1.7 Hz, 1H), 7.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.38–7.21 (m, 3H), 7.10–7.00 (m, 2H),
3.87 (s, 3H); 13C NMR (75 MHz, CDCl3) d 156.8, 155.2, 143.8, 130.0, 128.5,
127.2, 124.1, 122.6, 121.2, 120.9, 120.8, 117.5, 111.6, 111.2, 55.5; HRMS (EI)
calcd for [C15H12O2]+: m/z 224.0837, found: 224.0835. Compound 5f: 1H NMR
(300 MHz, CDCl3) d 7.86 (s, 1H), 7.65-7.56 (m, 2H), 7.33 (td, J = 7.9, 1.7 Hz, 1H),
7.10–6.97 (m, 3H), 6.90 (dd, J = 8.7, 2.3 Hz, 1H), 3.86 (s, 6H); 13C NMR (75 MHz,
CDCl3) d 157.9, 156.8, 156.1, 142.8, 129.8, 128.4, 121.4, 121.1, 120.8, 120.5,
117.4, 111.7, 111.2, 96.0, 55.7, 55.5; HRMS (EI) calcd for [C16H14O3]+: m/z
254.0943, found: 254.0946. Compound 5g: 1H NMR (300 MHz, CDCl3) d 7.39 (d,
J = 8.5 Hz, 1H), 7.33 (d, J = 1.2 Hz, 1H), 7.01 (d, J = 2.2 Hz, 1H), 6.90 (dd, J = 8.5,
2.2 Hz, 1H), 3.86 (s, 3H), 2.23 (s, 3H); 13C NMR (75 MHz, CDCl3) d 158.0, 156.2,
140.5, 122.5, 119.5, 115.5, 111.2, 96.0, 55.7, 7.9; HRMS (EI) calcd for
[C10H10O2]+: m/z 162.0681, found: 162.0683. Compound 5h: 1H NMR
(300 MHz, CDCl3) d 8.32 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.82 (d,
J = 8.5 Hz, 1H), 7.81 (s, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.63–7.53 (m, 3H), 7.48 (t,
J = 7.8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3) d
159.2, 151.3, 139.9, 131.5, 128.8, 128.3, 126.4, 125.3, 124.6, 123.5, 123.1, 122.1,
121.6, 120.1, 118.8, 114.5, 55.4; HRMS (EI) calcd for [C19H14O2]+: m/z 274.0994,
found: 274.0993. Compound 5i: 1H NMR (300 MHz, CDCl3) d 8.01 (d, J = 8.2 Hz,
1H), 7.90 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.62
(s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.43–7.31 (m, 2H), 7.01 (d, J = 7.8 Hz, 2H), 3.86
(s, 3H); 13C NMR (75 MHz, CDCl3) d 159.4, 153.1, 141.6, 131.0, 130.8, 128.9,
128.4, 125.9, 125.8, 125.2, 124.3, 124.0, 123.3, 121.0, 114.1, 112.7, 55.4; HRMS
(EI) calcd for [C19H14O2]+: m/z 274.0994, found: 274.0991. Compound 5j: 1H
Figure 2. Crystal structure of 5p.
bearing a 4-methoxyphenyl at R2 site underwent smooth dehydra-
tive cyclization to furnish excellent yields of 5k and 5l, respectively
(entries 11 and 12).
Methylketone 4g was transformed to the cyclized product 5g in
59% yield (entry 7). Naphthofurans were accessed in good yields
(entries 8 and 9). Interestingly, only one regioisomer 5i was iso-
lated in case of 4i.12,13 Substrates having substituents at both R2
and R3 positions also worked well under these conditions to give
the highly substituted benzofurans (entries 10 and 17). Biphenyl
containing benzofuran 5o was also prepared in 96% yield (entry
15). Intriguingly, one regioisomer 5p was isolated from the reac-
tion of 4p with BCl3 (entry 16).14 The structure of 5p was unambig-
uously determined on the basis of an X-ray crystallographic
analysis (Fig. 2).15
In summary, we discovered that boron trichloride (BCl3) is a
very mild and convenient reagent for the synthesis of benzofurans
and naphthofurans via dehydrative cyclization. By varying the
electron density and substitution pattern of the phenolic part of
aryloxyketones, we were able to find the structural requirement
for the successful cyclization even when competitive demethyl-
ation via coordination of BCl3 to the carbonyl functionality can
be possible. Currently, efforts are being made to apply this protocol
to the synthesis of benzofuran-containing natural products as well
as other heterocycles and will be reported in due course.
References and notes
1. (a) McCallion, G. D. Curr. Org. Chem. 1999, 3, 67; (b) Kadieva, M. G.; Oganesyan,
É. T. Chem. Heterocycl. Compd. 1997, 33, 1245; (c) Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press,
1996; Vol. 2, p 259; (d)Comprehensive Heterocyclic Chemistry; Katritzky, A. R.,
Rees, C. W., Eds.; Pergamon Press, 1984; Vol. 4, p 531.
2. Dai, J.-R.; Hallock, Y. F.; Cardellina, J. H., II; Boyd, M. R. J. Nat. Prod. 1998, 61, 351.
3. For the isolation of shoreaphenol, see: Saraswathy, A.; Purushothaman, K. K.;
Patra, A.; Dey, A. K.; Kundu, A. B. Phytochemistry 1992, 31, 2561; For the
isolation of hopeafuran, see: Tanaka, T.; Ito, T.; Ido, Y.; Nakaya, K.; Iinuma, M.;
Chelladurai, V. Chem. Pharm. Bull. 2001, 49, 785.
4. For the isolation of iantheran A, see: (a) Okamoto, Y.; Ojika, M.; Suzuki, S.;
Murakami, M.; Sakagami, Y. Bioorg. Med. Chem. 2001, 9, 179; (b) Okamoto, Y.;
Ojika, M.; Sakagami, Y. Tetrahedron Lett. 1999, 40, 507. For the isolation and
biological studyof other iantherans, see: (c) Greve, H.; Meis, S.; Kassack, M. U.;
Kehraus, S.; Krick, A.; Wright, A. D.; König, G. M. J. Med. Chem. 2007, 50, 5600.
5. For selected examples, see: (a) Rizzo, S.; Riviere, C.; Piazzi, L.; Bisi, A.; Gobbi, S.;
Bartolini, M.; Andrisano, V.; Morroni, F.; Tarozzi, A.; Monti, J.-F.; Rampa, A. J.
Med. Chem. 2008, 51, 2883; (b) Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.;
NMR (300 MHz, CDCl3)
d 7.52–7.40 (m, 5H), 7.37–7.29 (m, 1H), 7.00 (d,
J = 2.2 Hz, 1H), 6.84 (dd, J = 8.6, 2.3 Hz, 1H), 3.84 (s, 3H), 2.49 (s, 3H); 13C NMR
(75 MHz, CDCl3) d 157.6, 154.9, 150.2, 133.0, 128.8, 128.7, 127.0, 122.2, 119.5,
116.6, 111.2, 95.9, 55.8, 12.8; HRMS (EI) calcd for [C16H14O2]+: m/z 238.0994,
found: 238.0991. Compound 5k: 1H NMR (300 MHz, CDCl3) d 7.52 (dt, J = 8.8,
2.1 Hz, 2H), 7.42 (s, 1H), 6.77 (dt, J = 8.8, 2.1 Hz, 2H), 6.95 (d, J = 2.0 Hz, 1H),
6.34 (d, J = 2.0 Hz, 1H), 3.83 (s, 6H), 3.78 (s, 3H); 13C NMR (75 MHz, CDCl3) d
159.1, 158.9, 157.8, 154.7, 139.3, 130.4, 124.8, 122.3, 113.4, 110.0, 94.5, 88.3,
55.7, 55.4, 55.3; HRMS (EI) calcd for [C17H16O4]+: m/z 284.1049, found:
284.1053. Compound 5l: 1H NMR (300 MHz, CDCl3) d 7.63 (s, 1H), 7.53 (dd,
J = 8.2, 0.7 Hz, 2H), 7.18 (s, 1H), 7.09 (s, 1H), 7.02 (dd, J = 8.3, 0.7 Hz, 2H), 3.95 (s,
3H), 3.93 (s, 3H), 3.87 (s, 3H); 13C NMR (75 MHz, CDCl3) d 159.0, 150.4, 148.2,
146.7, 139.7, 128.5, 124.7, 122.0, 118.5, 114.5, 101.6, 95.6, 56.5, 56.2, 55.3;
HRMS (EI) calcd for [C17H16O4]+: m/z 284.1049, found: 284.1055. Compound
5m: 1H NMR (300 MHz, CDCl3) d 7.57 (s, 1H), 7.48 (dd, J = 7.4, 1.7 Hz, 1H), 7.35
(td, J = 7.6, 1.8 Hz, 1H), 7.04 (dd, J = 7.5, 0.9 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.71
(d, J = 2.0 Hz, 1H), 6.35 (d, J = 1.9 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.75 (s, 3H);
13C NMR (75 MHz, CDCl3) d 159.2, 157.8, 157.5, 155.0, 141.2, 132.1, 128.8,