1550
L. Zhu et al.
LETTER
collected by filtration. Finally, the product was dried under
vacuum to give red-orange flake crystals (21 g). The
oxidation was performed in CH2Cl2 at r.t. in the presence of
CrO3·NH4Cl complex (3–4 equiv).
References
(1) (a) Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99.
(b) Montreuil, J.; Vleigenthart, J. F. G. Glycoproteins;
Elsevier: Amsterdam, 1995. (c) Wiegandt, H. E.
Glycolipids; Elsevier: Amsterdam, 1985. (d) Varki, A.
Glycobiology 1993, 3, 97. (e) Nagarajan, R. Glycopeptide
Antibiotics; Dekker: New York, 1994. (f) Allen, H. J.
Glycoconjugates: Composition, Structure, and Function;
Dekker: New York, 1992.
(15) Compound 4 is not very stable, after reaction it should be
used directly. Storage at 4 °C for 3 d led to decomposition to
a black oil.
(16) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
(17) Dermatakis, A.; Luk, K.-C.; DePinto, W. Bioorg. Med.
Chem. 2003, 11, 1873.
(2) (a) Kirschning, A.; Jesberger, M.; Schoning, K.-U. Synthesis
2001, 507. (b) Marzabadi, C. H.; Franck, R. W. Tetrahedron
2000, 56, 8385. (c) Toshima, K.; Tatsuta, K. Chem. Rev.
1993, 93, 1503. (d) Sztaricskai, F.; Pelyvas-Ferenczik, I.
Glycopeptide Antibiotics; Dekker: New York, 1994.
(e) Hauser, F. M.; Ellenberger, S. R. Chem. Rev. 1986, 86,
35. (f) Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe,
A. J. Chem. Rev. 1996, 96, 1195.
(3) Pelyvas-Ferenczik, I.; Monneret, C.; Herczegh, P. Synthetic
Aspects of Aminodeoxy Sugars of Antibiotics; Springer-
Verlag: Berlin, 1988.
(4) (a) For a comprehensive review based on stereoselective
syntheses of carbohydrates, see: McGarvey, G. J.; Kimura,
M.; Oh, T.; Williams, J. M. J. Carbohydr. Chem. 1984, 3,
125; and references cited therein. (b) Behrens, C. H.;
Sharpless, K. B. Aldrichimica Acta 1983, 16, 67; and
references cited therein.
(5) (a) Babu, R. S.; Zhou, M.; O’Doherty, G. A. J. Am. Chem.
Soc. 2004, 126, 3428. (b) Haukaas, M. H.; O’Doherty, G. A.
Org. Lett. 2002, 4, 1771.
(6) (a) Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan,
D. W. C. Angew. Chem. Int. Ed. 2004, 43, 2152.
(b) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305,
1752.
(18) (a) Takano, S.; Shimazaki, Y.; Sekiguchi, Y.; Ogasawara, K.
Synthesis 1989, 539. (b) Miyashita, M.; Suzuki, T.;
Yoshikoshi, A. Tetrahedron Lett. 1987, 28, 4293.
(19) Procedure for Kinetic Enzymatic Resolution of (R)-1-(2-
Furyl)ethanol.
To a stirred mixture of 1-(2-furyl)ethanol (60 g, 0.54 mol)
and isopropenyl acetate (200 mL, 1.82 mol) in diisopropyl
ether (200 mL) was added Novozyme 435 (3.0 g). The
reaction mixture was warmed to 40 °C and monitored by GC
analysis. The reaction was stopped by filtration when 45%
conversion rate was reached (ca. 2.5 h). The filtrate was
concentrated on rotary evaporator. The residue was
subjected for fractional distillation and collected the fraction
at 82–85 °C/25 mmHg. The yellow oil obtained was
consequently mixed with PBS buffer (pH = 7.0, 1.2 L) and
Novozyme 435 (2.0 g) and stirred at r.t. for 2 h. TLC
indicated the completion of the hydrolysis. The enzyme was
removed by filtration and the aqueous solution was extracted
with EtOAc (6 × 150 mL). The combined organic phases
were dried over MgSO4 and concentrated under vacuum.
The crude product was purified by column chromatography
(hexanes–EtOAc, 10:1) to give (R)-1 (21.5 g, >97% ee by
chiral GC analysis).
(20) Spectroscopic data.
(7) (a) Andreana, P. R.; McLellan, J. S.; Chen, Y.; Wang, P. G.
Org. Lett. 2002, 4, 3875. (b) Zhu, L.; Kedenburg, J. P.;
Xian, M.; Wang, P. G. Tetrahedron Lett. 2005, 46, 811.
(8) (a) Ghanem, A. Org. Biomol. Chem. 2003, 1, 1282.
(b) Ghanem, A.; Schurig, V. Tetrahedron: Asymmetry 2003,
14, 2547. (c) Mandal, S. K.; Sigman, M. S. J. Org. Chem.
2003, 68, 7535. (d) Akai, S.; Naka, T.; Omura, S.;
Tanimoto, K.; Imanishi, M.; Takebe, Y.; Matsugi, M.; Kita,
Y. Chem.–Eur. J. 2002, 8, 4255.
Compound 9 was obtained as its a-anomer from the coupling
constant of the anomeric proton signal. The parent ion was
not observed by HRMS, due to decomposition of this
compound under the analysis conditions. IR (neat): 2950,
2100 (N3 group), 1275, 1050 cm–1. 1H NMR (250 MHz,
CDCl3): d = 4.96 (d, J = 3.0 Hz, 1 H), 4.09 (qd, J = 6.5, 1.8
Hz, 1 H), 3.91 (sept, J = 6.1 Hz, 1 H), 3.48 (m, 1 H), 2.14 (m,
1 H), 1.95 (m, 2 H), 1.56 (m, 1 H), 1.22 (d, J = 6.5 Hz, 6 H),
1.16 (d, J = 6.1 Hz, 3 H). 13C NMR (63 MHz, CDCl3): d =
94.2, 67.9, 64.8, 59.8, 24.3, 23.0, 22.7, 21.2, 17.6.
Compound 10: 1H NMR (400 MHz, CD3OD): d = 4.37–4.32
(m, 1 H), 3.86 (d, J = 9.0 Hz, 1 H), 3.67 (d, J = 4.2 Hz, 1 H),
3.62 (d, J = 4.2 Hz, 1 H), 1.34 (d, J = 6.3 Hz, 3 H). 13C NMR
(100 MHz, CD3OD): d = 167.6, 73.4, 71.1, 55.9, 50.5, 17.1.
HRMS (ESI): m/z calcd for C6H8O4Na: 167.0320 [M + Na+].
Found: 167.0324.
(9) Harris, J. M.; Keranen, M. D.; O’Doherty, G. A. J. Org.
Chem. 1999, 64, 2982.
(10) (a) Kametani, T.; Tsubuki, M.; Tatsuzaki, Y.; Honda, T.
Heterocycles 1988, 27, 2107. (b) Kametani, T.; Tsubuki,
M.; Tatsuzaki, Y.; Honda, T. J. Chem. Soc., Perkin Trans. 1
1990, 639. (c) Honda, T.; Kametani, T.; Kanai, K.;
Tatsuzaki, Y.; Tsubuki, M. J. Chem. Soc., Perkin Trans. 1
1990, 1733.
(11) (a) Kobayashi, Y.; Kusakabe, M.; Kitano, Y.; Sato, F. J.
Org. Chem. 1988, 53, 1587. (b) Kusakabe, M.; Kitano, Y.;
Kobayashi, Y.; Sato, F. J. Org. Chem. 1989, 54, 2085.
(12) (a) Yang, Z.-C.; Zhou, W.-S. Tetrahedron Lett. 1995, 36,
5617. (b) Yang, Z.-C.; Jiang, X.-B.; Wang, Z.-M.; Zhou, W.-
S. J. Chem. Soc., Chem. Commun. 1995, 2389.
(13) Harris, J. M.; Keranen, M. D.; Nguyen, H.; Young, V. G.;
O’Doherty, G. A. Carbohydr. Res. 2000, 328, 17.
(14) (a) Zhang, G.; Wang, J.; Cheng, M.; Cai, K. Chin. Chem.
Lett. 1994, 5, 105. (b) The CrO3·NH4Cl complex was
synthesized according to the paper: CrO3 (20 g) was
dissolved in a minimum amount of H2O (ca. 10–12 mL).
Then NH4Cl (8.6 g, 1 equiv) was added in portions as solid.
The mixture was allowed to stir at r.t. for 10 min and then
warm up to 40 °C to ensure a homogenous solution was
obtained. After being cooled down to r.t., the crystals were
Compound 13: 1H NMR (400 MHz, CD3OD): d = 4.48–4.42
(m, 1 H), 3.92 (d, J = 9.2 Hz, 1 H), 3.63 (d, J = 4.4 Hz, 1 H),
3.54 (d, J = 4.4 Hz, 1 H), 1.33 (d, J = 6.4 Hz, 3 H), 0.93 (s,
9 H), 0.18 (s, 3 H), 0.15 (s, 3 H).
13C NMR (100 MHz, CD3OD): d = 166.7, 73.3, 71.0, 55.9,
50.7, 25.8, 18.3, –3.9, –4.5. HRMS (ESI): m/z calcd for
C12H22O4SiNa: 281.1185 [M + Na+]. Found: 281.1190.
Compound 17 was obtained as a mixture of a/b-anomers,
selected data for b-anomer: 1H NMR (400 MHz, CD3OD):
d = 5.03 (dd, J = 9.0, 2.3 Hz, 1 H), 4.10 (q, J = 3.5 Hz, 1 H),
3.64 (dq, J = 9.2, 6.3 Hz, 1 H), 3.41 (m, 1 H), 2.14 (q,
J = 14.0 Hz, 1 H), 1.83 (m, 1 H), 1.32 (d, J = 6.7 Hz, 3 H).
13C NMR (100 MHz, CD3OD): d = 90.8, 69.7, 67.0, 63.1,
32.1, 15.3. [a]D25 38 (c 1.0, MeOH-d4). HRMS (EI): m/z
calcd for C6H11N3O3: 173.0796. Found: 173.0802.
Synlett 2005, No. 10, 1547–1550 © Thieme Stuttgart · New York