Leo et al.
were carried out using the Berny analytical gradient optimization
method.25 The stationary points were characterized by frequency
calculations to verify that the TSs have one and only one imaginary
frequency. The intrinsic reaction coordinate26 path was traced to
check the energy profiles connecting each TS with the two
associated minima of the proposed mechanism by using the second-
order Gonza´lez-Schlegel integration method.27 The electronic
structures of stationary points were analyzed by the natural bond
orbital method.28 All calculations were carried out with the Gaussian
03 suite of programs.29
experimental results and the theoretical calculations at the
UB3LYP/6-31G* computational level.
Experimental Section
Chemicals. Compounds 1a,10b 1b,12 2a,10b and 2b18 (see struc-
tures in Chart 1) were prepared following the literature methods.
Isolation and purification were done by conventional column
chromatography on silica gel, using hexane/dichloromethane as
eluent. Isolation of the pure enantiomers of 1a and 1b was
performed by semipreparative HPLC equipped with a chiral column,
employing 2-propanol/hexane as eluent.
Acknowledgment. Financial support from the Spanish
Goverment (Grant No. CTQ2004-03811), the Generalitat Va-
lenciana (Grupos 03/82), and the Universidad Polite´cnica de
Valencia (Grant 20060286 and fellowship to E.A.L.) is gratefully
acknowledged.
Photoproducts 4a,19 4b,20 7,21 8,18 9,18 10,22 and 1122 were known
and their structures were confirmed by comparison of their
spectroscopic data with those reported in the literature. Aniline,
4-phenylbutanal, and styrene were identified by comparison with
authentic samples.
Supporting Information Available: The (U)B3LYP/6-31G*
computed total energies, S2 values, unique imaginary frequency
of the TSs, and Cartesian coordinates of the stationary involved in
the reactions of the 1,5- and 1,4-azabiradicals Ia and Ib (23 pages).
This material is available free of charge via the Internet at
General Irradiation Procedure. Solutions of 1 mg/mL of the
substrate in HPLC grade acetonitrile were irradiated at room
temperature through quartz, with a multilamp photoreactor equipped
with eight lamps emitting at 254 nm (monochromatic). The
1
photoreaction course was followed by means of GC/MS and H
NMR.
JO0601967
The photoproducts obtained upon irradiation of the different
substrates are given below; the product distributions are indicated
in parentheses.
Irradiation of 1a (4 h, 24% conversion): 4-phenylbutanal +
aniline (57%) and 4a (43%).
Irradiation of 1b (30 min, 30% conversion): styrene (93%) and
4b (7%).
Irradiation of 2b (2h, 55% conversion): 7 (25%), 8 (11%), 9
(6%), 10 (33%), and 11 (25%).
Computational Methods. DFT calculations were carried out
using the B3LYP23 exchange-correlation functionals, together with
the standard 6-31G* basis set.24 For all DFT calculations, the
unrestricted formalism (UB3LYP) was employed. Optimizations
(25) (a) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214-218. (b)
Schlegel, H. B. “Geometry Optimization on Potential Energy Surface,” in
Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific
Publishing: Singapore, 1994.
(26) Fukui, K. J. Phys. Chem. 1970, 74, 4161-4163.
(27) (a) Gonza´lez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-
5527. (b) Gonza´lez, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853-
5860.
(28) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,
83, 735-746.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(18) Hurd, G. D.; Jenkins, W. W. J. Org. Chem. 1957, 22, 1418-1423.
(19) Werner, L. H.; Ricca, S.; Ross, A.; De Stevens, G. J. Med. Chem.
1967, 10, 575-582.
(20) Perold, G. W.; Von Reiche, F. V. K. J. Am. Chem. Soc. 1957, 79,
465-467.
(21) Johansen, M.; Jorgensen, K. A. J. Org. Chem. 1994, 59, 214-216.
(22) Gilbert, B. C.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.;
Whittaker, D. F. E. Synth. Commun. 1999, 29, 2711-2718.
(23) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785-
789. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(24) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio
Molecular Orbital Theory, Wiley: New York, 1986.
4444 J. Org. Chem., Vol. 71, No. 12, 2006