A. Zarei et al. / Tetrahedron Letters 49 (2008) 6715–6719
6719
Bamoniri, A. H.; Khazdooz, L. Bull. Korean Chem. Soc. 2003, 24, 1009; (c)
Hajipour, A. R.; Koshki, B.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 5503; (d)
Eshghi, H.; Hassankhani, A. Synth. Commun. 2006, 36, 2211; (e) Tamaddon, F.;
Khoobi, M.; Keshavarz, E. Tetrahedron Lett. 2007, 48, 3643.
Musiu, C.; Scintu, F.; Putzolu, M.; Colla, P. L. Eur. J. Med. Chem. 1997, 32, 143; (n)
Shirude, S. T.; Patel, P.; Giridhar, R.; Yadav, M. R. Indian J. Chem. 2006, 45B, 1080.
16. Spectral data of new compounds: Table 1, entry 7: Yellow solid; mp 172–174 °C;
1H NMR (300 MHz, CDCl3) d = 8.25 (2H, d, J = 8.82 Hz), 7.98 (3H, m), 7.74 (1H, d,
J = 7.35Hz), 7.52 (1H, d, J = 9.1 Hz), 7.4 (2H, m), 7.32 (1H, d, J = 9.1 Hz), 3.8 (3H,
s). 13C NMR (75 MHz, CDCl3) d = 196.6, 155.5, 151.2, 143.3, 133.2, 132.3, 131,
129.6, 129.2, 128.7, 125.2, 124.6, 124.2, 122, 113.5, 57.2. EIMS m/z (%): 307 (M+,
56), 290 (16), 276 (13), 260 (12), 185 (100), 142 (25), 127 (21), 120 (27), 114
(26), 106 (15), 92 (14), 76 (14), 43 (34). IR (KBr) cmꢀ1: 3040, 2920 1675, 1600,
1530, 1340, 1235, 1080, 890, 840, 800. Anal. Calcd for C18H13NO4: C, 70.03; H,
4.23; N, 4.56. Found: C, 70.16; H, 4.21; N, 4.51. Table 1, entry 8: Yellow solid;
mp 124–126 °C; 1H NMR (300 MHz, CDCl3) d = 8.16 (2H, d, J = 9.2 Hz), 7.97 (2H,
d, J = 9.2 Hz), 7.44 (1H, d, J = 4.1 Hz), 6.87 (1H, d, J = 4.1 Hz), 2.6 (3H, s). 13C NMR
(75 MHz, CDCl3) d = 189, 149.1, 147, 143.2, 142.5, 136.5, 130, 127.2, 123.9,
16.3. EIMS m/z (%): 247 (M+, 2), 246 (3), 232 (2), 125 (100), 106 (5), 97 (6), 78
(2), 53 (15), 45 (4). IR (KBr) cmꢀ1: 3060, 2875, 1630, 1590, 1520, 1450, 1350,
1300, 1050, 870, 840, 700. Anal. Calcd for C12H9NSO3: C, 58.3; H, 3.64; N, 5.66;
S, 12.95. Found: C, 58.22; H, 3.55; N, 5.76; S, 12.86. Table 1, entry 10: Bright
yellow solid; mp 140–142 °C; 1H NMR (300 MHz, CDCl3) d = 8.36 (2H, d,
J = 9 Hz), 7.92 (2H, d, J = 9 Hz), 7.75 (2H, d, J = 8.4 Hz), 7.34(2H, d, J = 8.4 Hz), 2.6
(3H, s). 13C NMR (75 MHz, CDCl3) d = 196, 147.1, 143.8, 140.5, 135, 130.8, 130.7,
125.1, 123.7, 18.5. EIMS m/z (%): 273 (M+, 47), 243 (24), 196 (10), 151 (100),
123 (13), 120 (45), 108 (18), 76 (16), 45 (20). IR (KBr) cmꢀ1: 3065, 2885, 1640,
1585, 1515, 1360, 1290, 1090, 935, 850. Anal. Calcd for C14H11NSO3: C, 61.53;
H, 4.03; N, 5.13; S, 11.71. Found: C, 61.62; H, 4.13; N, 5.04; S, 11.81. Table 1,
entry 16: Yellow solid; mp 86–88 °C; 1H NMR (300 MHz, CDCl3) d = 8.2 (2H, d,
J = 8.5 Hz), 7.55 (1H, s), 7.4 (2H, d, J = 8.5Hz), 7.22 (1H, d, J = 8.05 Hz), 7.15 (1H,
d, J = 8.05 Hz), 4.37 (2H, s), 2.42 (3H, s), 2.39 (3H, s). 13C NMR (75 MHz, CDCl3)
d = 195.1, 145.3, 137, 134.5, 134, 133.2, 132.7, 131.1, 129.7, 128.4, 124.2, 48.1,
24.9, 21.6. IR (KBr) cmꢀ1: 3065, 2890, 1680, 1600, 1510, 1340, 1170, 985, 960,
820, 720. Anal. Calcd for C16H15NO3: C, 71.37; H, 5.57; N, 5.20. Found: C, 71.30;
H, 5.50; N, 5.28. Table 1, entry 17: Yellow solid; mp 122–124 °C; 1H NMR
(500 MHz, CDCl3) d = 8.2 (2H, d, J = 8.3 Hz), 8 (2H, d, J = 7.96 Hz), 7.55 (2H, d,
J = 8.28 Hz), 7.44 (2H, d, J = 7.93 Hz), 4.6 (2H, s), 2.99 (1H, septet, J = 6.8 Hz),
1.24 (6H, d, J = 6.8 Hz). 13C NMR (75 MHz, CDCl3) d = 195.8, 145.2, 143.1, 134.3,
131.3, 130.7, 130.6, 127, 123.6, 45.8, 34.5, 24.1. EIMS m/z (%): 283 (M+, 2), 147
(100), 119 (9), 104 (8), 91 (15), 77 (7), 41 (5). IR (KBr) cmꢀ1: 3060, 2925, 1670,
1600, 1520, 1350, 1230, 990, 840, 725. Anal. Calcd for C17H17NO3: C, 72.08; H,
6.05; N, 4.94%. Found: C, 72.15; H, 6.11; N, 5.01. Table 1, entry 19: Yellow solid;
mp 119–121 °C; 1H NMR (300 MHz, CDCl3) d = 8.18 (2H, d, J = 8.7 Hz), 7.85 (1H,
d, J = 8.65 Hz), 7.38 (2H, d, J = 8.7 Hz), 6.55 (1H, dd, J1 = 8.65 Hz, J2 = 2.48 Hz),
6.48 (1H, d, J = 2.48 Hz), 4.4 (2H, s), 3.92 (3H, s), 3.88 (3H, s). 13C NMR (75 MHz,
CDCl3) d = 194.5, 163, 160.1, 146.2, 142.3, 134.1, 131.4, 124.2, 117.5, 106.1,
98.7, 56.3, 56.1, 49.4. IR (KBr) cmꢀ1: 3045, 2920, 1660, 1600, 1515, 1355, 1310,
1270, 1140, 990, 830, 735. Anal. Calcd for C16H15NO5: C, 63.78; H, 4.98; N, 4.65.
Found: C, 63.71; H, 5.08; N, 4.72.
12. P2O5/SiO2 was prepared by mixing phosphorus pentoxide (3 g) and 3 g of dried
Silica Gel 60 (0.063–0.200 mm, previously heated at 120 °C for 24 h) in a round
bottomed flask with a glass spatula. After 10 min, a fine and homogenous
powder was obtained. This reagent was heated in an oven at 120 °C for 1 h and
then stored in a sealed flask for later use. General procedure for the acylation of
aromatic compounds using carboxylic acids and P2O5/SiO2: To a mixture of a
carboxylic acid (1.5 mmol) and an aromatic compound (5 mL), P2O5/SiO2
(0.6 g) was added and the reaction mixture was stirred under reflux conditions
for the appropriate reaction times (Table 1). After completion of the reaction
(monitored by TLC), the mixture was diluted with EtOAc and filtered. The
organic layer was washed with 10% NaHCO3 solution and then dried over
anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give
the corresponding pure aryl ketone.
13. Typical procedure for the acylation of toluene using 4-nitrophenylacetic acid and
P2O5/SiO2: To a mixture of 4-nitrophenylacetic acid (1.5 mmol, 0.27 g) and
toluene (5 mL), P2O5/SiO2 (0.6 g) was added and the reaction mixture was
stirred under reflux conditions for 3 h. After cooling, the mixture was diluted
with EtOAc (15 mL) and after vigorous stirring was filtered. The residue was
extracted with EtOAc (2 ꢁ 10 mL) and the collected organic layer was washed
with 10% NaHCO3 solution and then dried over anhydrous Na2SO4. The solvent
was evaporated under reduced pressure to give 1-(p-tolyl)-2-(4-
nitrophenyl)ethanone in 80% yield (0.15 g, Table 1, entry 15).
14. Typical procedure for the acylation of 1,3-dimethoxybenzene using 4-nitrobenzoic
acid and P2O5/SiO2 in 1,2-dichloroethane under reflux conditions: To a mixture of
4-nitrobenzoic acid (1.5 mmol, 0.25 g), 1,3-dimethoxybenzene (3 mmol,
0.4 mL) and 1,2-dichloroethane (5 mL), P2O5/SiO2 (0.6 g) was added and the
reaction mixture was stirred under reflux conditions for 3 h. After cooling, the
mixture was diluted with CH2Cl2 (15 mL) and after vigorous stirring was
filtered. The residue was extracted with CH2Cl2 (2 ꢁ 10 mL) and the collected
organic layer was washed with 10% NaHCO3 solution and then dried over
anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The
crude product was washed with cold n-hexane to give (2,4-
dimethoxyphenyl)(4-nitrophenyl)methanone in 78% yield (0.165 g, Table 1,
entry 6).
15. (a) Yamashita, M. Bull. Chem. Soc. Jpn. 1928, 3, 180; (b) Ray, F. E.; Moomaw, W.
A. J. Am. Chem. Soc. 1933, 55, 3833; (c) Hey, D. H.; Jackson, E. R. B. J. Chem. Soc.
1936, 802; (d) Adams, R.; Theobald, C. W. J. Am. Chem. Soc. 1943, 65, 2208; (e)
Goncalves, R.; Kegelman, M. R.; Brown, E. V. J. Org. Chem. 1952, 17, 705; (f)
Fuson, R. C.; Emmons, W. D.; Smith, S. G. J. Am. Chem. Soc. 1955, 77, 2503; (g)
Metz, G. Synthesis 1972, 614; (h) Goeckner, N. A.; Snyder, H. R. J. Org. Chem.
1973, 38, 481; (i) Sawada, S.; Miyasaka, T.; Arakawa, K. Chem. Pharm. Bull. 1977,
25, 3370; (j) Krespan, C. G. J. Org. Chem. 1979, 44, 4924; (k) Rappoport, Z.; Pross,
N. J. Org. Chem. 1980, 45, 4309; (l) Dictionary of Organic Compounds, 5th ed.,
Chapman and Hall, 1982; (m) Santo, R. D.; Costi, R.; Artico, M.; Massa, S.;
17. So, Y. H.; Heeschen, J. P. J. Org. Chem. 1997, 62, 3552.
18. Field, L. J. Am. Chem. Soc. 1952, 74, 394.