mide11 at 60 °C for 4 h. FeCl3 (0.5 mol %) and
12
ꢀ-bromostyrene 2 (E:Z ) 85:15) were added at 0 °C to the
THF solution of 1a (1.2 equiv). The reaction mixure was
stirred at 50 °C for 24 h, and the yield of the desired enyne
Table 1. Effect of Lewis Basic and Acidic Additives
entrya
additive (X mol %)
yield of 3 (%)b recovery of 2 (%)
1
3 was determined by H NMR.
1
2
3
4
5
6
7
8
none (–)
12
2
83
69
76
76
75
36
18
9
71
72
65
93
Table 1 summarizes the result of the screening of Lewis
basic or acidic promoters. As in entry 1, conversion of
ꢀ-bromostyrene was sluggish without any addtives to give
3 in 12% yield. Previously reported effective additives for
the iron-catalyzed coupling reactions were tested. Those
additives are the following: N-methyl-2-pyrrolidone5a-d (9.0
equiv, NMP), tricyclohexylphosphine6g (1 mol %, PCy3), 1,3-
bis(2,6-i-propylphenyl)imidazolinium hydrochloride6g (2 mol
%, SIPr·HCl), hexamethylenetetramine6i (5 mol %, HMTA),
and N,N,N′,N′-tetramethylethylenediamine (10 mol %, TME-
DA). These additives, however, did not improve the product
yield (entries 2-5). A stoichiometric amount of TMEDA6a
(1.2 equiv) accerelated the reaction to give 3 in 60% yield
NMP (900)
HMTA/TMEDA (5/10)
SIPr·HCl (2)
PCy3 (1)
TMEDA (120)
LiCl (120)
LiBr (120)
LiBr (60)
LiBr (20)
MgBr2 (120)
ZnCl2 (120)
15
11
17
60
82
85
27
21
28
1
9
10
11
12
a Reactions were carried out on a 1.0 mmol scale. b The yield was
1
determined by H NMR analysis by using dibromomethane as an internal
standard.
(3) Selected papers: (a) Shirakawa, E.; Sato, T.; Imazaki, Y.; Kimura,
T.; Hayashi, T. Chem. Commun. 2007, 4513–4515. (b) Walker, J. A.; Bitler,
S. P.; Wudl, F. J. Org. Chem. 1984, 49, 4733–4734. (c) Madec, D.; Pujol,
S.; Henryon, V.; Fe´re´zou, J. P. Synlett 1995, 435–438. (d) Wang, L.; Li,
P.; Zhang, Y. Chem. Commun. 2004, 514–515. (e) Saejueng, P.; Bates,
C. G.; Venkataraman, D. Synthesis 2005, 1706–1712. (f) Li, J. H.; Li, J. L.;
Wang, D. P.; Pi, S. F.; Xie, Y. X.; Zhang, M. B.; Hu, X. C. J. Org. Chem.
2007, 72, 2053–2057. (g) Liu, F.; Ma, D. J. Org. Chem. 2007, 72, 4844–
4850.
(entry 6). Note that additional TMEDA or prolonged reaction
time did not improve the yield.
We next examined a series of metal salts and found that
a considerable improvement of the yield could be achieved
with 120 mol % of LiCl or LiBr13 (entries 7 and 8). It is
noteworthy that 1-octynyllithium, prepared from 1-octyne
and n-BuLi, did not give enyne 3 under the same conditions.
Reduced amount of LiBr (20 and 60 mol %) or use of
additional magnesium salts was not effective (entries 9-11).
In sharp contrast to Negishi coupling, addition of ZnCl2
(transmetalation to zinc)2b did not work at all under the
present conditions (entry 12). In all cases, enyne 3 was
obtained as a 88:12 mixture of geometrical isomers (E:Z)
along with the formation of hexadeca-7,9-diyne in 1-5%.
To examine the substrate scope of the reaction, we carried
out the cross-coupling reaction using a variety of alkenyl
electrophiles and alkynyl magnesium bromides (1a-1f,
Figure 1) in the presence of FeCl3 (0.5-3 mol %) and LiBr
(120 mol %).
(4) (a) Iron Catalysis in Organic Chemistry; Plietker, B. Ed.; Wiley-
VCH: Weinheim, 2008. (b) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem.
ReV. 2004, 104, 6217–6254. (c) Shinokubo, H.; Oshima, K. Eur. J. Org.
Chem. 2004, 2081–2091. (d) Fu¨rstner, A.; Rube´n, M. Chem. Lett. 2005,
34, 624–629.
(5) (a) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199–1205. (b) Dohle,
W.; Kopp, F.; Cahiez, G.; Knochel, P. Synlett 2001, 1901–1904. (c) Fu¨rstner,
A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609–612. (d) Fu¨rstner,
A.; Leitner, A.; Me´ndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124,
13856–13863. (e) Fu¨rstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2003,
42, 308–311. (f) Hocek, M.; Dvor´akov´a, H. J. Org. Chem. 2003, 68, 5773–
5776. (g) Scheiper, B.; Bonnekessel, M.; Krause, H.; Fu¨rstner, A. J. Org.
Chem. 2004, 69, 3943–3949. (h) Dongol, K. G.; Koh, H.; Sau, M.; Chai,
C. L. L. AdV. Synth. Catal. 2007, 349, 1015–1018.
(6) (a) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem.
Soc. 2004, 126, 3686–3687. (b) Nagano, T.; Hayashi, T. Org. Lett. 2004,
6, 1297–1299. (c) Martin, R.; Fu¨rstner, A. Angew. Chem., Int. Ed. 2004,
43, 3955–3957. (d) Bedford, R. B.; Bruce, W. D.; Frost, M. R.; Goodby,
W. J.; Hird, M. Chem. Commun. 2004, 2822–2823. (e) Sapountzis, I.; Lin,
W.; Kofink, C. C.; Despotopoulou, C.; Knochel, P. Angew. Chem., Int. Ed.
2005, 44, 1654–1658. (f) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Hird,
M. Chem. Commun. 2005, 4161–4163. (g) Bedford, R. B.; Betham, M.;
Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. J. Org. Chem.
2006, 71, 1104–1110. (h) Bica, K.; Gaertner, P. Org. Lett. 2006, 8, 733–
735. (i) Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. Angew. Chem.,
Int. Ed. 2007, 46, 4364–4366. (j) Hatakeyama, T.; Nakamura, M. J. Am.
Chem. Soc. 2007, 129, 9844–9845. (k) Volla, C-M. R.; Vogel, P. Angew.
Chem., Int. Ed. 2008, 47, 1305–1307.
(7) (a) Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9, 3253–
3254. (b) Gue´rinot, A.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed.
2007, 46, 6521–6524.
(8) (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487–
1489. (b) Tamura, M.; Kochi, J. K. Synthesis 1971, 93, 303–305. (c) Tamura,
M.; Kochi, J. K. J. Organomet. Chem. 1971, 31, 289–309. (d) Tamura, M.;
Kochi, J. K. Bull. Chem. Soc. Jpn. 1971, 44, 3063–3073. (e) Neumann, S.;
Kochi, J. K. J. Org. Chem. 1975, 40, 599–606. (f) Smith, R. S.; Kochi,
J. K. J. Org. Chem. 1976, 41, 502–509.
Figure 1. Alkynylmagnesium reagents examined for the cross-
coupling.
(9) Berben, L. A.; Long, J. R. Inorg. Chem. 2005, 44, 8459–8468.
(10) Bolm et al. recently reported an iron-catalyzed Sonogashira coupling
of terminal alkynes and iodoarenes, under less basic or nucleophilic
conditions than those described here. The present enyne coupling reaction
did not proceed with Bolm’s iron-catalyst system. Carril, M.; Correa, A.;
Bolm, C. Angew. Chem., Int. Ed 2008, 47, 4862–4865.
Table 2 illustrates the iron-catalyzed cross-coupling reac-
tions under the optimum conditions described above. As
shown in entry 1, the reaction between 1a and 2 completed
at 60 °C for 24 h to give enyne 3 in 95% yield. Iron(II)
(11) Deprotonation can be achieved at room temperature by using
ethylmagnesium bromide.
(12) FeCl2, Fe(acac)3, and other iron salts showed comparable catalytic
activity as described in entry 1, Table 2.
(13) Other lithium salts were also examined: LiI (32%), LiOTf (86%),
LiClO4 and LiBF4 (0%). The combined use of lithium salt and TMEDA
was not as effective as lithium salt itself.
5342
Org. Lett., Vol. 10, No. 23, 2008