Organic Letters
Letter
When another 8-methyl quinoline is used as the base, ΔG⧧ and
ΔG were calculated to be 18.7 and −83.2 kcal/mol (Int-3′ →
TS-35′ → Int-5′), respectively.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
The higher ΔG⧧ value than that for Int-3′ → TS-34′ → Int-
4′, which is due to the entropic cost involved in bringing two
molecules together, suggests that this pathway only plays a
minor role.
Author Contributions
We postulate a mechanism12 depicted in Scheme 1 to
rationalize the Wolff rearrangement products. A notable
∇These authors contributed equally.
Notes
Scheme 1. Plausible Mechanism
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Ministry of Education (No. MOE
106N506CE1) and the Ministry of Science and Technology
(No. MOST 107-3017-F-007-002), Taiwan, for financial
support of this work.
REFERENCES
■
(1) See selected reviews: (a) Wolff, L. Justus Liebigs Ann. Chem.
1902, 325, 129. (b) Kirmse, W. Eur. J. Org. Chem. 2002, 2002, 2193.
(c) Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778.
(2) For the Wolff rearrangements by thermolysis and photolysis, see:
(a) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128, 6060.
(b) Jiao, L.; Liang, Y.; Zhang, Q.; Zhang, S.; Xu, J. Synthesis 2006,
2006, 659. (c) Linder, M. R.; Podlech, J. Org. Lett. 2001, 3, 1849.
(d) Podlech, J.; Linder, M. R. J. Org. Chem. 1997, 62, 5873. (e) Li, M.
M.; Wei, Y.; Liu, J.; Chen, H. W.; Lu, L. Q.; Xiao, W. J. J. Am. Chem.
Soc. 2017, 139, 14707.
(3) For silver catalyzed Wolff rearrangements, see: (a) Sudrik, S. G.;
Maddanimath, T.; Chaki, N. K.; Chavan, S. P.; Chavan, S. P.;
Sonawane, H. R.; Vijayamohanan, K. Org. Lett. 2003, 5, 2355.
(b) Sarpong, R.; Su, J. T.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125,
13624. (c) Seki, H.; Georg, G. I. J. Am. Chem. Soc. 2010, 132, 15512.
(d) Davies, P. W.; Albrecht, S. J. C.; Assanelli, G. Org. Biomol. Chem.
2009, 7, 1276.
feature is the formation of gold enolates such as In-6 after a
Nu-H addition. For gold-bound ketenes bearing oxime ethers
ln-4′, their initially formed C-bound enolates ln-7 equilibrate
with their O-bound enolates ln-8, before an intramolecular
cyclization to yield the observed products 9. In this process,
transformations of species ln-7 and ln-8 into highly strained
azacycles 9 involve a release of gold moiety, resulting in an
increase in entropy.
In summary, this work reports gold-catalyzed oxidative
rearrangement of thioalkynes13 using 8-methylquinoline oxides
and alcohols, yielding the Wolff rearrangement products. In
contrast with α-diazo thiol esters, which are restricted to the
unsubstituted type. The substrate scope of thioalkynes is wide,
including terminal and internal alkynes bearing esters, ketones,
and even alkyl substituents, further broadening the synthetic
utility. Interestingly, thioalkynyl oxime ethers were also
applicable substrates to yield 2H-azirine-2-carboxylate deriva-
tives. Our DFT calculations indicate that gold-catalyzed
oxidations14 of terminal and internal thioalkynes with N-
oxides generate gold-bound ketene intermediates, favorably
from both kinetic and thermodynamic aspects. Herein, α-oxo
gold carbenes are not the precursors to gold-bound ketenes.
(4) For gold and copper catalyzed X-H Insertion, see: (a) Liu, L.;
Zhang, J. Chem. Soc. Rev. 2016, 45, 506. (b) Huang, D.; Xu, G.; Peng,
S.; Sun, J. Chem. Commun. 2017, 53, 3197. (c) Fructos, M. R.;
́
Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Díaz-
́
Requejo, M. M.; Perez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284.
(d) Zhou, L.; Liu, Y.; Zhang, Y.; Wang, J. Beilstein J. Org. Chem. 2011,
7, 631. (e) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594.
(f) Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066.
(g) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am.
Chem. Soc. 2007, 129, 12616.
ASSOCIATED CONTENT
■
(5) For Pd(II), Rh(II) and Fe(II) catalyzed X-H Insertion, see:
(a) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew.
Chem., Int. Ed. 2014, 53, 2978. (b) Li, M.-L.; Chen, M.-Q.; Xu, B.;
Zhu, S.-F.; Zhou, Q.-L. Huaxue Xuebao 2018, 76, 883. (c) Saito, H.;
Uchiyama, T.; Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.;
Miyairi, S. Heterocycles 2010, 81, 1149. (d) García, C. F.; McKervey,
M. A.; Ye, T. Chem. Commun. 1996, 1465. (e) Bulugahapitiya, P.;
Landais, Y.; Parra-Rapado, L.; Planchenault, D.; Weber, V. J. Org.
Chem. 1997, 62, 1630. (f) Ma, B.; Chen, F. L.; Xu, X. Y.; Zhang, Y.
N.; Hu, L. H. Adv. Synth. Catal. 2014, 356, 416.
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, crystal-
lography data, and 1H NMR and 13C NMR for
representative compounds (PDF)
(6) (a) Jiang, Y.; Chan, W. C.; Park, C.-M. J. Am. Chem. Soc. 2012,
134, 4104. (b) Marsden, S. P.; Pang, W.-K. Chem. Commun. 1999,
1199. (c) Lawlor, M. D.; Lee, T. W.; Danheiser, R. L. J. Org. Chem.
2000, 65, 4375. (d) Yanez, E. C.; Almanza, R. C. Rev. Soc. Quim. Mex.
2004, 48, 46. (e) Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A.
M. Z. J. Org. Chem. 2005, 70, 5840.
(7) (a) Zhang, L. Acc. Chem. Res. 2014, 47, 877. (b) Zheng, Z.;
Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
(c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (d) Ye, L.; Cui,
Accession Codes
CCDC 1888301 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
D
Org. Lett. XXXX, XXX, XXX−XXX