A R T I C L E S
Llanes-Pallas et al.
To develop such materials, the hierarchical self-assembly of
multivalent components through the concerted action of multiple
noncovalent interactions turns out to be one of the most
promising approaches, as it allows the simultaneous organization
of discrete molecules, long-range order, and inherently defect-
free structures.23-27 The structural and functional properties of
the final supramolecular architectures result from the information
stored in their molecular components, which is dictated by the
interplay of conformational and geometrical constraints and by
the presence of specific functional moieties.28 One of the major
problems in working with nanostructured materials is that the
matter can no longer be considered as a bulk entity, since the
molecular components need to be addressed at the single-
molecule level.29 As a consequence, widely employed engineer-
ing methodologies in nanotechnology use inert surfaces as
supporting substrates in the assembly of supramolecular net-
works. In this regard, the now mature scanning probe micros-
copy (SPM) techniques, especially scanning tunneling micros-
copy (STM) at the solid-liquid interface, enable the nanoscale
characterization of these molecule-based 2D supramolecular
architectures in direct space.30-46
A classical approach to the formation of 2D supramolecular
networks via spontaneous self-assembly of molecular modules
is to use weak yet highly directional interactions, such as
H-bonds, that provide a powerful handle for the engineering
and design of supramolecular assemblies by reducing the effect
of nonspecific intermolecular interactions (e.g., of the van der
Waals type). Although this methodology has been widely and
successfully employed in the preparation of monocomponent
networks,47-60 it has been less explored in the self-assembly
of large programmed bicomponent61-71 architectures. In order
to achieve complete control over the 2D structure and properties
in dynamic media (i.e., at the solid-liquid interface), it is also
important to understand the interplay between the molecule-
(44) Hulsken, B.; Van Hameren, R.; Gerritsen, J. W.; Khoury, T.;
Thordarson, P.; Crossley, M. J.; Rowan, A. E.; Nolte, R. J. M.;
Elemans, J. A. A. W.; Speller, S. Nat. Nanotechnol. 2007, 2, 285.
(45) Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.;
Cheng, F. Y.; Guntherodt, H. J.; Jung, T.; Diederich, F. Angew. Chem.,
Int. Ed. 2004, 43, 4759.
(46) Cicoira, F.; Santato, C.; Rosei, F. Top. Curr. Chem. 2008, 285, 203.
(47) Barth, J. V.; Weckesser, J.; Cai, C. Z.; Gunter, P.; Burgi, L.;
Jeandupeux, O.; Kern, K. Angew. Chem., Int. Ed. 2000, 39, 1230.
(48) De Feyter, S.; Gesquiere, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.;
De Schryver, F. C.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mu¨llen,
K. Acc. Chem. Res. 2000, 33, 520.
(13) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks,
R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre´das, J. L.;
Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
(14) Forrest, S. R. Nature 2004, 428, 911.
(49) Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl,
W. M. Single Mol. 2002, 3, 25.
(15) Cacialli, F.; Wilson, J. S.; Michels, J. J.; Daniel, C.; Silva, C.; Friend,
R. H.; Severin, N.; Samor`ı, P.; Rabe, J. P.; O’Connell, M. J.; Taylor,
P. N.; Anderson, H. L. Nat. Mater. 2002, 1, 160.
(50) Lu, J.; Zeng, Q. D.; Wang, C.; Zheng, Q. Y.; Wan, L. J.; Bai, C. L.
J. Mater. Chem. 2002, 12, 2856.
(51) Giorgi, T.; Lena, S.; Mariani, P.; Cremonini, M. A.; Masiero, S.;
Pieraccini, S.; Rabe, J. P.; Samor`ı, P.; Spada, G. P.; Gottarelli, G.
J. Am. Chem. Soc. 2003, 125, 14741.
(16) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki,
S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006, 314,
1761.
(52) Yoshimoto, S.; Yokoo, N.; Fukuda, T.; Kobayashi, N.; Itaya, K. Chem.
Commun. 2006, 500.
(17) Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644.
(18) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. ReV. 2007, 107,
1324.
(53) Pawin, G.; Wong, K. L.; Kwon, K. Y.; Bartels, L. Science 2006, 313,
961.
(19) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,
W. Nat. Mater. 2005, 4, 366.
(54) Zhou, H.; Dang, H.; Yi, J. H.; Nanci, A.; Rochefort, A.; Wuest, J. D.
J. Am. Chem. Soc. 2007, 129, 13774.
(20) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154.
(21) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
(22) Science 2002, 295, 2396 (special issue on “Supramolecular Chemistry
and Self-Assembly”).
(55) Ma, Z.; Wang, Y. Y.; Wang, P.; Huang, W.; Li, Y. B.; Lei, S. B. ACS
Nano 2007, 1, 160.
(56) Sto¨hr, M.; Wahl, M.; Galka, C. H.; Riehm, T.; Jung, T. A.; Gade,
L. H. Angew. Chem., Int. Ed. 2005, 44, 7394.
(23) Bonifazi, D.; Kiebele, A.; Sto¨hr, M.; Cheng, F.; Jung, T.; Diederich,
F.; Spillmann, H. AdV. Funct. Mater. 2007, 17, 1051.
(24) Barth, J. V. Annu. ReV. Phys. Chem. 2007, 58, 375.
(25) Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671.
(26) Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.;
Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Prog.
Surf. Sci. 2003, 71, 95.
(57) Gottarelli, G.; Masiero, S.; Mezzina, E.; Pieraccini, S.; Rabe, J. P.;
Samor`ı, P.; Spada, G. P. Chem.sEur. J. 2000, 6, 3242.
(58) Tao, F.; Bernasek, S. L. Langmuir 2007, 23, 3513.
(59) Xu, L. P.; Gong, J. R.; Wan, L. J.; Jiu, T. G.; Li, Y. L.; Zhu, D. B.;
Deng, K. J. Phys. Chem. B 2006, 110, 17043.
(60) Meier, C.; Ziener, U.; Landfester, K.; Weihrich, P. J. Phys. Chem. B
2005, 109, 21015.
(27) Rosei, F. J. Phys.: Condens. Matter 2004, 16, S1373.
(28) Chem. ReV. 2005, 105, 1023-1562 (special issue on “Functional
Nanostructures”).
(61) De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wu¨rthner, F.; Jonkheijm,
P.; Schenning, A.; Meijer, E. W.; De Schryver, F. C. Nano Lett. 2005,
5, 77.
(29) Gimzewski, J. K.; Joachim, C. Science 1999, 283, 1683.
(30) De Feyter, S.; De Schryver, F. C. J. Phys. Chem. B 2005, 109, 4290.
(31) Piot, L.; Bonifazi, D.; Samor`ı, P. AdV. Funct. Mater. 2007, 17, 3689.
(32) Surin, M.; Samor`ı, P. Small 2007, 3, 190.
(62) Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.;
Beton, P. H. Nature 2003, 424, 1029.
(63) Perdigao, L. M. A.; Perkins, E. W.; Ma, J.; Staniec, P. A.; Rogers,
B. L.; Champness, N. R.; Beton, P. H. J. Phys. Chem. B 2006, 110,
12539.
(33) Otero, R.; Rosei, F.; Besenbacher, F. Annu. ReV. Phys. Chem. 2006,
57, 497.
(64) Mourran, A.; Ziener, U.; Mo¨ller, M.; Suarez, M.; Lehn, J. M. Langmuir
2006, 22, 7579.
(34) Hermann, B. A.; Scherer, L. J.; Housecroft, C. E.; Constable, E. C.
AdV. Funct. Mater. 2006, 16, 221.
(65) Xu, W.; Dong, M. D.; Gersen, H.; Rauls, E.; Vazquez-Campos, S.;
Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Laegsgaard, E.;
Linderoth, T. R.; Besenbacher, F. Small 2007, 3, 854.
(66) Ruiz-Oses, M.; Gonzalez-Lakunza, N.; Silanes, I.; Gourdon, A.; Arnau,
A.; Ortega, J. E. J. Phys. Chem. B 2006, 110, 25573.
(67) Can˜as-Ventura, M. E.; Xiao, W.; Wasserfallen, D.; Mu¨llen, K.; Brune,
H.; Barth, J. V.; Fasel, R. Angew. Chem., Int. Ed. 2007, 46, 1814.
(68) Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest, J. D.; Nanci,
A.; Perepichka, D. F.; Rosei, F. J. Am. Chem. Soc. 2006, 128, 4212.
(69) Eichhorst-Gerner, K.; Stabel, A.; Moessner, G.; Declerq, D.; Valiyaveet-
til, S.; Enkelmann, V.; Mu¨llen, K.; Rabe, J. P. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1492.
(35) Cyr, D. M.; Venkataraman, B.; Flynn, G. W. Chem. Mater. 1996, 8,
1600.
(36) Giancarlo, L. C.; Flynn, G. W. Acc. Chem. Res. 2000, 33, 491.
(37) Rabe, J. P.; Buchholz, S. Science 1991, 253, 424.
(38) Mena-Osteritz, E. AdV. Mater. 2002, 14, 609.
(39) Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; De
Schryver, F. C.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2006,
128, 3502.
(40) Lei, S. B.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.;
Tobe, Y.; De Feyter, S. Angew. Chem., Int. Ed. 2008, 47, 2964.
(41) Schull, G.; Douillard, L.; Fiorini-Debuisschert, C.; Charra, F.; Mathe-
vet, F.; Kreher, D.; Attias, A. J. Nano Lett. 2006, 6, 1360.
(42) Wan, L. J. Acc. Chem. Res. 2006, 39, 334.
(70) Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008,
454, 618.
(43) Wei, Y. H.; Kannappan, K.; Flynn, G. W.; Zimmt, M. B. J. Am. Chem.
Soc. 2004, 126, 5318.
(71) Llanes-Pallas, A.; Matena, M.; Jung, T.; Prato, M.; Sto¨hr, M.; Bonifazi,
D. Angew. Chem., Int. Ed. 2008, 47, 7726.
9
510 J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009