N-Sulfonyl-D-Glu DeriVatiVes as Inhibitors of MurD
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 23 7493
(10) Bouhss, A.; Dementin, S.; van Heijenoort, J.; Parquet, C.; Blanot, D.
MurC and MurD synthetases of peptidoglycan biosynthesis: borohy-
dride trapping of acyl-phosphate intermediates. Methods Enzymol.
2002, 354, 189–196.
) 9.0, 2.4 Hz, 1H, naph-H), 7.55 (d, J ) 2.4 Hz, 1H, naph-H),
7.66-7.77 (m, 3H, 1 × naph-H and 2 × Ar-H), 7.86-7.93 (m,
2H, Ar-H), 7.97 (d, J ) 8.8 Hz, 1H, naph-H), 8.10 (d, J ) 9.0
Hz, 1H, naph-H), 8.30 (d, J ) 1.6 Hz, 1H, naph-H), 8.37 (d,
1H, J ) 7.5 Hz, NH); MS m/z 497 (M + H)+. Anal.
(C25H24N2O7S) C, H, N.
ˇ
(11) Kotnik, M.; Stefanicˇ Anderluh, P.; Prezˇelj, A. Development of novel
inhibitors targeting intracellular steps of peptidoglycan biosynthesis.
Curr. Pharm. Des 2007, 13, 2283–2309, and references therein.
Step 5. N-(6-(4-Cyanobenzyloxy)naphthalene-2-sulfonamido)-
D-glutamic Acid (17l). To a stirred solution of protected sulfona-
mide 16l (124 mg, 0.25 mmol) in dioxane (2 mL), 1 M NaOH
(2 mL) was added, and the reaction mixture was stirred for 3 h.
The reaction mixture was diluted with H2O (15 mL) and washed
with EtOAc (2 × 15 mL). The aqueous phase was acidified to
pH 1-2 using 2 M HCl and extracted with EtOAc (3 × 15 mL).
The combined organic layers were washed with brine (1 × 20
mL), dried over Na2SO4, filtered, and evaporated under reduced
pressure to provide the target compound 17l. White solid (105
(12) Ikeda, M.; Wachi, M.; Jung, H. K.; Ishino, F.; Matsuhashi, M.
Homology among MurC, MurD, MurE and MurF proteins in Escheri-
chia coli and that between Escherichia-coli MurG and a possible MurG
protein in Bacillus subtilis. J. Gen. Appl. Microbiol 1990, 36, 179–
187.
(13) Bouhss, A.; Mengin-Lecreulx, D.; Blanot, D.; van Heijenoort, J.;
Parquet, C. Invariant amino acids in the Mur peptide synthetases of
bacterial peptidoglycan synthesis and their modification by site-directed
mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia
coli. Biochemistry 1997, 36, 11556–11563.
(14) Eveland, S. S.; Pompliano, D. L; Anderson, M. S. Conditionally lethal
Escherichia coli murein mutants contain point defects that map to
regions conserved among murein and folyl poly-γ-glutamate ligases:
identification of a ligase superfamily. Biochemistry 1997, 36, 6223–
6229.
(15) Bouhss, A.; Dementin, S.; Parquet, C.; Mengin-Lecreulx, D.; Bertrand,
J. A.; Le Beller, D.; Dideberg, O.; van Heijenoort, J.; Blanot, D. Role
of the ortholog and paralog amino acid invariants in the active site of
the UDP-MurNAc-L-alanine:D-glutamate ligase (MurD). Biochemistry
1999, 38, 12240–12247.
(16) Bertrand, J. A.; Auger, G.; Fanchon, E.; Martin, L.; Blanot, D.; van
Heijenoort, J.; Dideberg, O. Crystal structure of UDP-N-acetylmu-
ramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J.
1997, 16, 3416–3425.
(17) Bertrand, J. A.; Fanchon, E.; Martin, L.; Chantalat, L.; Auger, G.;
Blanot, D.; van Heijenoort, J.; Dideberg, O. “Open” structures of
MurD: domain movements and structural similarities with folylpoly-
glutamate synthetase. J. Mol. Biol. 2000, 301, 1257–1266.
(18) Yan, Y.; Munshi, S.; Leiting, B.; Anderson, M. S.; Chrzas, J.; Chen,
Z. Crystal structure of Escherichia coli UDPMurNAc-tripeptide
D-alanyl-D-alanine-adding enzyme (MurF) at 2.3 Å resolution. J. Mol.
Biol. 2000, 304, 435–445.
(19) Longenecker, K. L.; Stamper, G. F.; Hajduk, P. J; Fry, E. H.; Jakob,
C. G.; Harlan, J. E.; Edalji, R; Bartley, D. M.; Walter, K. A.; Solomon,
L. R.; Holzman, T. F.; Gu, Y. G.; Lerner, C. G.; Beutel, B. A.; Stoll,
V. S. Structure of MurF from from Streptococcus pneumoniae co-
crystallized with a small molecule inhibitor exhibits interdomain
closure. Protein Sci. 2005, 14, 3039–3047.
1
mg, 90%); mp 180-185 °C; [R]2D3 -16.0 (c 0.225, MeOH); H
NMR (300 MHz, DMSO-d6) δ 1.58-1.75 (m, 1H, CHCH2),
1.76-1.94 (m, 1H, CHCH2), 2.21 (t, J ) 7.4 Hz, 2H, CH2COO),
3.77-3.90 (m, 1H, CH), 5.40 (s, 1H, OCH2), 7.40 (dd, J ) 9.0,
2.4 Hz, 1H, naph-H), 7.54 (d, J ) 2.4 Hz, 1H, naph-H),
7.57-7.79 (m, 3H, 1 × naph-H and 2 × Ar-H), 7.86-7.99 (m,
3H, 1 × naph-H and 2 × Ar-H), 8.08 (d, J ) 9.0 Hz, 1H, naph-
H), 8.31 (d, J ) 1.6 Hz, 1H, naph-H); MS m/z 469 (M + H)+.
Anal. (C23H20N2O7S) C, H, N.
Acknowledgment. This work was supported by the
European Union FP6 Integrated Project EUR-INTAFAR
(Project No. LSHM-CT-2004-512138) under the thematic
priority Life Sciences, Genomics and Biotechnology for
Health and by the Ministry of Education, Science and Sport
of the Republic of Slovenia, the Centre National de la
Recherche Scientifique, Lek Pharmaceuticals d.d., and the
Institut Franc¸ais Charles Nodier. The authors thank Dr. Chris
Berrie for critical reading of the manuscript.
Supporting Information Available: Description of crystal
structure solution and model refinement, full synthetic experi-
mental section, and microanalysis and HRMS data. This material
(20) Perdih, A.; Kotnik, M.; Hodoscek, M.; Solmajer, T. Targeted molecular
dynamics simulation studies of binding and conformational changes
in E. coli MurD. Proteins 2007, 68, 243–254.
(21) Tanner, M. E.; Vaganay, S.; van Heijenoort, J.; Blanot, D. Phosphinate
inhibitors of the D-glutamic acid-adding enzyme of peptidoglycan
biosynthesis. J. Org. Chem. 1996, 61, 1756–1760.
References
(1) Fauci, A. S. Infectious diseases: considerations for the 21st century.
Clin. Infect. Dis. 2001, 32, 675–685.
(2) (a) Cosgrove, S.; Carmeli, Y. The impact of antimicrobial resistance
on health and economic outcomes. Clin. Infect. Dis. 2003, 36, 1433–
1437. (b) Projan, S. J. Why is big Pharma getting out of antibacterial
drug discovery? Curr. Opin. Microbiol. 2003, 6, 427–430.
(3) (a) van Heijenoort, J. Recent advances in the formation of the bacterial
peptidoglycan monomer unit. Nat. Prod. Rep. 2001, 18, 503–519. (b)
Barreteau, H.; Kovacˇ, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot,
B. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol.
ReV. 2008, 32, 168–207, and references therein.
(4) Green, D. W. The bacterial cell wall as a source of antibacterial targets.
Expert Opin. Ther. Targets 2002, 6, 1–19.
(5) (a) Silver, L. L. Novel inhibitors of bacterial cell wall synthesis. Curr.
Opin. Microbiol. 2003, 6, 431–438. (b) Katz, A. H.; Caufield, C. E.
Structure-based design approaches to cell wall biosynthesis inhibitors.
Curr. Pharm. Des. 2003, 9, 857–866.
(6) El Zoeiby, A.; Sanschagrin, F.; Levesque, R. C. Structure and function
of the Mur enzymes: development of novel inhibitors. Mol. Microbiol.
2003, 47, 1–12.
(7) Bertrand, J. A.; Auger, G.; Martin, L.; Fanchon, E.; Blanot, D.; Le
Beller, D.; van Heijenoort, J.; Dideberg, O. Determination of the MurD
mechanism through crystallographic analysis of enzyme complexes.
J. Mol. Biol. 1999, 289, 579–590.
(8) Falk, P. J.; Ervin, K. M.; Volk, K. S.; Ho, H. T. Biochemical evidence
for the formation of a covalent acyl-phosphate linkage between UDP-
N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetyl-
muramate:L-alanine ligase-catalyzed reaction. Biochemistry 1996, 35,
1417–1422.
(9) Emanuele, J. J.; Jin, H.; Yanchunas, J.; Villafranca, J. J. Evaluation
of the kinetic mechanism of Escherichia coli uridine diphosphate-N-
acetylmuramate:L-alanine ligase. Biochemistry 1997, 36, 7264–7271.
(22) Gegnas, L. D.; Waddell, S. T.; Chabin, R. M.; Reddy, S.; Wong, K. K.
Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg.
Med. Chem. Lett. 1998, 8, 1643–1648.
(23) Kotnik, M.; Oblak, M.; Humljan, J.; Gobec, S.; Urleb, U.; Solmajer,
T. Quantitative structure-activity relationships of Streptococcus
pneumoniae MurD transition state analogue inhibitors. QSAR Comb.
Sci. 2004, 23, 399–405.
ˇ
(24) Strancar, K.; Blanot, D.; Gobec, S. Design, synthesis and structure-
activity relationships of new phosphinate inhibitors of MurD. Bioorg.
Med. Chem. Lett. 2006, 16, 343–348.
(25) Horton, J. R.; Bostock, J. M.; Chopra, I.; Hesse, L.; Phillips, S. E. V.;
Adams, D. J.; Johnson, A. P.; Fishwick, C. W. G. Macrocyclic
inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg.
Med. Chem. Lett. 2003, 13, 1557–1560.
(26) Paradis-Bleau, C.; Beaumont, M.; Boudreault, L.; Lloyd, A.; San-
schagrin, F.; Bugg, T. D. H.; Levesque, R. C. Selection of peptide
inhibitors against the Pseudomonas aeruginosa MurD cell wall
enzyme. Peptides 2006, 27, 1693–1700.
(27) Antane, S.; Caufield, C. E.; Hu, W.; Keeney, D.; Labthavikul, P.;
Morris, K.; Naughton, S. M.; Petersen, P. J.; Rasmussen, B. A.; Singh,
G.; Yang, Y. Pulvinones as bacterial cell wall biosynthesis inhibitors.
Bioorg. Med. Chem. Lett. 2006, 16, 176–180.
(28) Li, Z.; Francisco, G. D.; Hu, W.; Labthavikul, P.; Petersen, P. J.;
Severin, A.; Singh, G.; Yang, Y.; Rasmussen, B. A.; Lin, Y. I.;
Skotnicki, J. S.; Mansour, T. S. 2-Phenyl-5,6-dihydro-2H-thieno[3,2-
c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall
biosynthesis. Bioorg. Med. Chem. Lett. 2003, 13, 2591–2594.
(29) Abad-Zapatero, C.; Metz, J. T. Ligand efficiency indices as guidepost
for drug discovery. Drug DiscoVery Today 2005, 10, 464–469.