Palladium Hydride Complexes as Catalysts
A R T I C L E S
sion of (E)- and (Z)-alkenes or the controlled migration of this
functionality along a carbon chain is of high importance.5-10
Recently, the selective transformation of terminal alkenes into
2-alkenes has received increased attention, since such migrations
allow the conversion of products obtained from a C-C bond-
forming allylation to the corresponding adducts of vinylation
or propenylation. This one-carbon shift protocol was recently
highlighted by Donohoe and co-workers,11 stating: “Allyl groups
have the advantage that they can be installed readily in
procedures that are more convenient than the addition of a vinyl
group, for example, through a radical Keck-type allylation of
haloalkanes the allylation of an enolate, or the addition of an
allylic organometallic reagent to a carbonyl group. Subsequent
isomerization of the terminal olefin to the internal position
affords a propenyl group, which can be further functionalized.
Therefore, this sequence builds a bridge between the chemistry
of an allyl group and that of a vinyl group; this tactic is
particularly useful in synthesis.”
(5) For representative examples of E/Z interconversions, see the following.
Isomerizations based on acids: (a) Gibson, T. W.; Strassburger, P. J.
Org. Chem. 1976, 41, 791. Isomerizations based on halogens: (b)
Hepperle, S. S.; Li, Q.; East, A. L. L. J. Phys. Chem. A 2005, 109,
10975. (c) Kodomari, M.; Sakamoto, T.; Yoshitomi, S. Bull. Chem.
Soc. Jpn. 1989, 62, 4053. Isomerizations based on photochemistry: (d)
Sairre, M. I.; Arau´jo, L. F. N.; Silva, R.; Donate, P. M.; Silve´rio,
C. A.; Okano, L. T. J. Braz. Chem. Soc. 2008, 19, 194. (e) Dugave,
C.; Demange, L. Chem. ReV. 2003, 103, 2475. (f) Baag, M. M.; Kar,
A.; Argade, N. P. Tetrahedron 2003, 59, 6489. (g) Jacobsen, E. N.;
Deng, L.; Furukawa, Y.; Martine´z, L. E. Tetrahedron 1994, 15, 4323.
(h) Iranpoor, N.; Mottaghinejad, E. J. Organomet. Chem. 1992, 423,
399. Isomerizations based on radical processes: (i) Bosanac, T.; Yang,
J.; Wilcox, C. S. Angew. Chem., Int. Ed. 2001, 40, 1875. (j) Ali, M. A.;
Tsuada, Y. Chem. Pharm. Bull. 1992, 40, 2842.
One-carbon migrations of alkenes have in the past few years
been successfully performed, exploiting a ruthenium hydride
based complex derived from a Grubbs generation II metathesis
catalyst.9t-x,10i,11-14 Migration of the unsaturation does not
proceed further, despite the fact that additional isomerization
of the unsaturation would afford products of higher thermody-
namic stability (conjugation or increased substitution pattern
of the olefin). Impressive examples on the use of this Ru-based
catalyst have been reported in the literature with catalyst
loadings generally in the range of 5-10 mol % and sometimes
with the necessity for stoichiometric additives.12,14 These
catalysts are, however, not without some drawbacks, as they
also can promote unwanted side reactions such as reduction and
self-dimerization of the olefin.11,15 In the end, this leads to
depletion of the overall yield of the transformation in combina-
tion with potentially difficult purification steps.
(6) For representative examples of E/Z interconversions, using palladium,
see: (a) Canovese, L.; Santo, C.; Visentin, F. Organometallics 2008,
27, 3577. (b) Kim, I. S.; Dong, G. R.; Jung, Y. H. J. Org. Chem.
2007, 72, 5424. (c) Yu, J.; Gaunt, M.; Spencer, J. B. J. Org. Chem.
2002, 67, 4627.
(7) For representative examples of migrations in allyl groups, see
migrations based on bases: (a) Catozzi, N.; Edwards, M. G.; Raw,
S. A.; Wasnaire, P.; Taylor, R. J. K. J. Org. Chem. 2009, 74, 8343.
(b) Bo¨hrsch, V.; Blechert, S. Chem. Commun. 2006, 1968. (c) Sagoet,
O.; Monteux, D.; Langlois, Y.; Riche, C.; Chiaroni, A. Tetrahedron
Lett. 1996, 37, 7019.
(8) For reviews of migrations in O-allyl systems, see: (a) Kuz´nik, N.;
Krompiec, S. Coord. Chem. ReV. 2007, 251, 222. (b) Uma, R.; Cre´visy,
C.; Gre´e, R. Chem. ReV. 2003, 103, 27. (c) van der Drift, R. C.;
Bouwmann, E.; Drent, E. J. Organomet. Chem. 2002, 650, 1.
(9) For representative examples of migrations in allyl groups using
transition metals, see the following. For Fe: (a) Crivello, J. V.; Kong,
S. J. Org. Chem. 1998, 63, 6745. For Ir: (b) Baxendale, I. R.; Lee,
A.-L.; Ley, S. V. Synlett 2002, 3, 516. For Rh: (c) Boons, G.-J.; Burton,
A.; Isles, S. Chem. Commun. 1996, 141. (d) Corey, E. J.; Suggs, W.
J. Org. Chem. 1973, 38, 3224. (e) Galbe, K. P. Tetrahedron Lett. 1991,
32, 23. (f) Gent, P. A.; Gigg, R. J. Chem. Soc., Chem. Commun. 1974,
227. (g) Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115,
2027. (h) van Boeckel, C. A. A.; Oltvoort, J. J.; van Boom, J. H.
Tetrahedron 1981, 37, 3751. (i) Strohmeier, W.; Weigelt, L. J.
Organomet. Chem. 1975, 86, C17. (j) Kloosterman, M.; van Boom,
J. H.; Chatelard, P.; Boulanger, P.; Descotes, G. Tetrahedron Lett.
1985, 26, 5045. (k) Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett.
1998, 39, 2075. (l) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45,
2139. For Pd: (m) Golborn, P.; Scheinmann, F. AdV. Catal. 1969, 20,
291. (n) Stork, G.; Atwal, K. S. Tetrahedron Lett. 1982, 23, 2073. (o)
Carless, H. A. J.; Haywood, D. J. J. Chem. Soc., Chem. Commun.
1980, 980. (p) Boss, R.; Scheffold, R. Angew. Chem., Int. Ed. Engl.
1976, 15, 558. (q) Moreau, B.; Lavielle, S.; Marquet, A. Tetrahedron
Lett. 1977, 18, 2591. For Ni: (r) Taniguchi, T.; Ogasawara, K. Angew.
Chem., Int. Ed. 1998, 37, 1136. (s) Taniguchi, T.; Ogasawara, K.
Tetrahedron Lett. 1998, 39, 4679. For Ru: (t) Donohoe, T. J.; Flore,
A.; Bataille, C. J. R.; Churruca, F. Angew. Chem., Int. Ed. 2009, 48,
6507. (u) Cadot, C.; Dalko, P. I.; Cossy, J. Tetrahdron Lett. 2002, 43,
1839, and references cited therein. (v) Alcaide, B.; Almendros, P.;
Alonso, J. M.; Aly, M. F. Org. Lett. 2001, 3, 3781. (w) Wang, D.;
Chen, D.; Haberman, J. X.; Li, C.-J. Tetrahedron 1998, 54, 5129. (x)
Zoran, A.; Sasson, Y.; Blum, J. J. Org. Chem. 1981, 46, 255. For Zr:
(y) Gibson, T.; Tulich, L. J. Org. Chem. 1981, 46, 1821.
Just recently, the RajanBabu group reported the use of another
interesting class of catalysts for this valuable single-carbon
migration reaction derived from [(allyl)PdCl]2, a triarylphos-
phine, and silver triflate.16 Although the transformation of
terminal olefins to 2-alkenes was successfully achieved with
the few examples tested, the E:Z ratio of the newly formed
disubstituted olefin was moderate. Hence, the identification of
alternative catalysts which can not only promote this interesting
migration reaction but also provide products with control of
the CdC bond geometry could be of significant importance.
(11) Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P. Angew. Chem., Int.
Ed. 2009, 48, 1014.
(12) For reviews on double-bond isomerizations with Ru hydride catalysts,
see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001,
101, 2067. (b) Naota, T.; Takaya, H.; Murahahsi, S.-I. Chem. ReV.
1998, 98, 2599.
(13) (a) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem.
2002, 114, 4926; Angew. Chem., Int. Ed. 2002, 41, 4732. (b) Arisawa,
M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org.
Chem. 2006, 71, 4255. (c) Terada, Y.; Arisawa, M.; Nishida, A. Angew.
Chem., Int. Ed. 2004, 43, 4063. (d) Louie, J.; Grubbs, R. H.
Organometallics 2002, 21, 2153. (e) Lee, H. M.; Smith, D. C., Jr.;
He, Z.; Stevens, E. D.; Yi, C. S.; Nolan, S. P. Organometallics 2001,
20, 794. (f) Dharmasena, U. L.; Foucault, H. M.; dos Santos, E. N.;
Fogg, D. E.; Nolan, S. P. Organometallics 2005, 24, 1056. (g) Trnka,
T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.;
Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc.
2003, 125, 2546. (h) Hong, S. H.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2004, 126, 7414.
(10) For representative examples of migrations applying transition metals,
see the following. For Mo: (a) Joe, D.; Overmann, L. E. Tetrahedron
Lett. 1997, 38, 8635. For Cr: (b) Sodeoka, M.; Yamada, H.; Shibasaki,
M. J. Am. Chem. Soc. 1990, 112, 4906. For Rh: (c) Matsuda, I.; Kato,
T.; Sato, S.; Izumi, Y. Tetrahedron Lett. 1986, 27, 5747. For Pd: (d)
Sen, A.; Lai, T. W. Inorg. Chem. 1984, 23, 3257. (e) Sen, A.; Lai,
T. W. Inorg. Chem. 1981, 20, 4036. For Ni: (f) Lochow, C. F.; Miller,
R. G. J. Org. Chem. 1976, 41, 3020. For Ru: (g) Grotjahn, D. B.;
Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma, A. J. Am. Chem.
Soc. 2007, 129, 9592. (h) Yue, C. J.; Liu, Y.; He, R. J. Mol. Catal. A:
Chem. 2006, 259, 17. (i) Schmidt, B. Eur. J. Org. Chem. 2004, 1865.
(j) Wakamatsu, H.; Nishida, M.; Adachi, N.; Mori, M. J. Org. Chem.
2000, 65, 3966. (k) Fu¨rstner, A.; Thiel, O. R.; Ackermann, L.; Schanz,
H.-J.; Nolan, S. P. J. Org. Chem. 2000, 65, 2204.
(14) (a) Alcaide, B.; Almendros, P.; Luna, A. Chem. ReV. 2009, 109, 3817,
and references therein. (b) Dinger, M. B.; Mol, J. C. Organometallics
2003, 22, 1089. (c) Dinger, M. B.; Mol, J. C. Eur. J. Inorg. Chem.
2003, 2827. (d) Hanessian, S.; Giroux, S.; Larsson, A. Org. Lett. 2006,
8, 5481. (e) Donohoe, T. J.; Rosa, C. P. Org. Lett. 2007, 9, 5509. (f)
Donohoe, T. J.; Chiu, J. Y. K.; Thomas, R. E. Org. Lett. 2007, 9,
421.
(15) Hong, S. H.; Snaders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem.
Soc. 2005, 127, 17160.
(16) Lim, H. J.; Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74,
4565.
9
J. AM. CHEM. SOC. VOL. 132, NO. 23, 2010 7999