Alkylcarbamic Acid Aryl Esters
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 12 2359
procedure40 was applied to calculate q2LOO as a rough estimate
of the predictive power and to choose the optimal number of
latent variables. Variables with an energy standard deviation
lower than 2 kcal/mol were discarded to minimize the influence
of noisy columns and to speed the computation. The final non-
cross-validated analyses were derived with the number of
(11) (a) Boger, D. L.; Sato, H.; Lerner, A. E.; Hedrick, M. P.; Fecik,
R. A.; Miyauchi, H.; Wilkie, G. D.; Austin, B. J .; Patricelli, M.
P.; Cravatt, B. F. Exceptionally potent inhibitors of fatty acid
amide hydrolase: The enzyme responsible for degradation of
endogenous oleamide and anandamide. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 5044-5049. (b) Boger, D. L.; Miyauchi, H.;
Hedrick, M. P. R-Keto Heterocycle Inhibitors of Fatty Acid Amide
Hydrolase: Carbonyl Group Modification and R-Substitution.
Bioorg. Med. Chem. Lett. 2001, 11, 1517-1520.
(12) (a) Deutsch, D. G.; Lin, S.; Hill, W. A. G.; Morse, K. L.; Salehani,
D.; Arreaza, G.; Omeir, R. L.; Makriyannis, A. Fatty Acid
Sulphonyl Fluorides Inhibit Anandamide Metabolism and Bind
to the Cannabinoid Receptor. Biochem. Biophys. Res. Commun.
1997, 231, 217-221. (b) Deutsch, D. G.; Omeir, R.; Arreaza, G.;
Salehani, D.; Prestwich, G. D.; Huang, Z.; Howlett, A. Methyl
Arachidonyl Fluorophosphonate: A Potent Irreversible Inhibitor
of Anandamide Amidase. Biochem. Pharmacol. 1997, 53, 255-
260. (c) De Petrocellis, L.; Melck, D.; Ueda, N.; Maurelli, S.;
Kurahashi, Y.; Yamamoto, S.; Marino, G.; Di Marzo, V. Novel
Inhibitors of Brain, Neuronal, and Basophilic Anandamide
Amidohydrolase. Biochem. Biophys. Res. Commun. 1997, 231,
82-88.
latent variables corresponding to the first maximum q2
LOO
value, or before nonsignificant increase of q2
(i.e., <0.05).
LOO
No filter was applied to the dependent variables in this case.
The contour volumes of the 3D-QSAR model, represented in
Figure 6B, correspond to the following cutoff values for the
product of the PLS coefficients and the standard deviation of
the steric potential: (blue) >+0.05, (green) >+0.01, (yellow)
<-0.01, (red) <-0.05.
Ack n ow led gm en t. This work was supported by
MIUR (Ministero dell’Istruzione, dell’Universita` e della
Ricerca), Universities of Parma and Urbino, and the
National Institute of Drug Abuse (to D.P.). The CCE
(Centro di Calcolo Elettronico) and CIM (Centro Inter-
facolta` Misure) of the University of Parma are gratefully
acknowledged for supplying the Sybyl software license.
(13) Bisogno, T.; De Petrocellis, L.; Di Marzo, V. Fatty Acid Amide
Hydrolase, an Enzyme with Many Bioactive Substrates. Possible
Therapeutic Implications. Curr. Pharm. Des. 2002, 8, 533-547.
(14) Dinh, T. P.; Carpenter, D.; Leslie, F. M.; Freund, T. F.; Katona,
I.; Sensi, S. L.; Kathuria, S.; Piomelli, D. Brain monoglyceride
lipase participating in endocannabinoid inactivation. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 10819-10824.
Refer en ces
(15) (a) Fernando, S. R.; Pertwee, R. G. Evidence that methyl
arachidonyl fluorophosphonate is an irreversible cannabinoid
receptor antagonist. Br. J . Pharmacol. 1997, 121, 1716-1720.
(b) Edgemond, W. S.; Greenberg, M. J .; McGinley, P. J .; Muth-
ians, S.; Campbell, W. B.; Hillard, C. J . Synthesis and Charac-
terization of Diazomethylarachidonyl Ketone: An Irreversible
Inhibitor of N-Arachidonylethanolamide Amidohydrolase. J .
Pharmacol. Exp. Ther. 1998, 286, 184-190.
(16) (a) Cravatt, B. F.; Giang, D. K.; Mayfield, S. P.; Boger, D. L.;
Lerner, R. A.; Gilula, N. B. Molecular characterization of an
enzyme that degrades neuromodulatory fatty-acid amides. Na-
ture (London) 1996, 384, 83-87. (b) Kobayashi, M.; Fujiwara,
Y.; Goda, M.; Komeda, H.; Shimizu, S. Identification of Active
Sites in Amidase: Evolutionary Relationship between Amide
Bond- and Peptide Bond-Cleaving Enzymes. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 11986-11991.
(17) (a) Patricelli, M. P.; Lovato, M. A.; Cravatt, B. F. Chemical and
Mutagenic Investigations of Fatty Acid Amide Hydrolase: Evi-
dence for a Family of Serine Hydrolases with Distinct Catalytic
Properties. Biochemistry 1999, 38, 9804-9812. (b) Patricelli, M.
P.; Cravatt, B. F. Clarifying the Catalytic Roles of Conserved
Residues in the Amidase Signature Family. J . Biol. Chem. 2000,
275, 19177-19184.
(18) Kathuria, S.; Gaetani, S.; Fegley, D.; Valin˜o, F.; Duranti, A.;
Tontini, A.; Mor, M.; Tarzia, G.; La Rana, G.; Calignano, A.;
Giustino, A.; Tattoli, M.; Palmery, M.; Cuomo, V.; Piomelli, D.
Modulation of Anxiety through Blockade of Anandamide Hy-
drolysis. Nat. Med. 2003, 9, 76-81.
(19) Leung, W.-Y.; Mao, F.; Haugland, R. P.; Klaubert, D. H.
Lipophilic Sulfophenylcarbocyanine Dyes: Synthesis of a New
Class of Fluorescent Cell Membrane Probes. Bioorg. Med. Chem.
Lett. 1996, 6, 1479-1482.
(20) (a) Reggio, P. H.; Traore, H. Conformational requirements for
endocannabinoid interaction with the cannabinoid receptors, the
anandamide transporter and fatty acid amidohydrolase. Chem.
Phys. Lipids 2000, 108, 15-35. (b) Barnett-Norris, J .; Guarnieri,
F.; Hurst, D. P.; Reggio, P. H. Exploration of Biologically
Relevant Conformations of Anandamide, 2-Arachidonylglycerol,
and Their Analogues Using Conformational Memories. J . Med.
Chem. 1998, 41, 4861-4872.
(1) Fowler, C. J .; J onsson, K.-O.; Tiger, G. Fatty acid amide
hydrolase: biochemistry, pharmacology, and therapeutic pos-
sibilities for an enzyme hydrolyzing anandamide, 2-arachi-
donoylglycerol, palmitoylethanolamide, and oleamide. Biochem.
Pharmacol. 2001, 62, 517-526 and refs 1-4 therein.
(2) Devane, W. A.; Hanusˇ, L.; Breuer, A.; Pertwee, R. G.; Stevenson,
L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.;
Mechoulam, R. Isolation and Structure of a Brain Constituent
That Binds to the Cannabinoid Receptor. Science 1992, 258,
1946-1949.
(3) Rodr´ıguez de Fonseca, F.; Navarro, M.; Go´mez, R.; Escuredo,
L.; Nava, F.; Fu, J .; Murillo-Rodr´ıguez, E.; Giuffrida, A.; LoV-
erme, J .; Gaetani, S.; Kathuria, S.; Gall, C.; Piomelli, D. An
anorexic lipid mediator regulated by feeding. Nature (London)
2001, 414, 209-212.
(4) (a) Calignano, A.; La Rana, G.; Giuffrida, A.; Piomelli, D. Control
of pain initiation by endogenous cannabinoids. Nature (London)
1998, 394, 277-281. (b) Lambert, D. M.; Vandevoorde, S.;
J onsson, K.-O.; Fowler, C. J . The Palmitoylethanolamide Fam-
ily: A New Class of Anti-inflammatory Agents? Curr. Med.
Chem. 2002, 9, 663-674.
(5) See the following for a review. (a) Schmid, H. H.; Schmid, P. C.;
Natarajan, V. The N-acylation-phosphodiesterase pathway and
cell signaling. Chem. Phys. Lipids 1996, 80, 133-142. (b)
Piomelli, D.; Giuffrida, A.; Calignano, A.; Rodrı´guez de Fonseca,
F. The endocannabinoid system as a target for therapeutic drugs.
Trends Pharmacol. Sci. 2000, 21, 218-224.
(6) (a) Di Marzo, V.; Fontana, A.; Cadas, H.; Schinelli, S.; Cimino,
G.; Schwartz, J .-C.; Piomelli, D. Formation and inactivation of
endogenous cannabinoid anandamide in central neurons. Nature
(London) 1994, 372, 686-691. (b) Beltramo, M.; Stella, N.;
Calignano, A.; Lin, S. Y.; Makriyannis, A.; Piomelli, D. Func-
tional Role of High-Affinity Anandamide Transport, as Revealed
by Selective Inhibition. Science 1997, 277, 1094-1097.
(7) See the following for
a review. Deutsch, D. G.; Ueda, N.;
Yamamoto, S. The fatty acid amide hydrolase (FAAH). Prostag-
landins Leukotrienes Essent. Fatty Acids 2002, 66, 201-210.
(8) Piomelli, D.; Beltramo, M.; Glasnapp, S.; Lin, S. Y.; Goutopoulos,
A.; Xie, X. Q.; Makriyannis, A. Structural determinants for
recognition and translocation by the anandamide transporter.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5802-5807.
(9) Patricelli, M. P.; Patterson, J . E.; Boger, D. L.; Cravatt, B. F.
An Endogenous Sleep-Inducing Compound Is a Novel Competi-
tive Inhibitor of Fatty Acid Amide Hydrolase Bioorg. Med. Chem.
Lett. 1998, 8, 613-618.
(21) Berman, H. M.; Westbrook, J .; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235-242.
(10) (a) Koutek, B.; Prestwich, G. D.; Howlett, A. C.; Chin, S. A.;
Salehani, D.; Akhavan, N.; Deutsch, D. G. Inhibitors of Arachi-
donoyl Ethanolamide Hydrolysis. J . Biol. Chem. 1994, 269,
22937-22940. (b) Patterson, J . E.; Ollmann, I. R.; Cravatt, B.
F.; Boger, D. L.; Wong, C.-H.; Lerner, R. A. Inhibition of
Oleamide Hydrolase Catalyzed Hydrolysis of the Endogenous
Sleep-Inducing Lipid cis-9-Octadecenamide. J . Am. Chem. Soc.
1996, 118, 5938-5945. (c) Boger, D. L.; Sato, H.; Lerner, A. E.;
Austin, B. J .; Patterson, J . E.; Patricelli, M. P.; Cravatt, B. F.
Trifluoromethyl Ketone Inhibitors of Fatty Acid Amide Hydro-
lase: A Probe of Structural and Conformational Features
Contributing to Inhibition. Bioorg. Med. Chem. Lett. 1999, 9,
265-270.
(22) LaLonde, J . M.; Levenson, M. A.; Roe, J . J .; Bernlohr, D. A.;
Banaszak, L. J . Adipocyte Lipid-Binding Protein Complexed with
Arachidonic Acid. Titration Calorimetry and X-ray Crystal-
lographic Studies. J . Biol. Chem. 1994, 269, 25339-25347.
(23) Malkowski, M. G.; Ginell, S. L.; Smith, W. L.; Garavito, R. M.
The Productive Conformation of Arachidonic Acid Bound to
Prostaglandin Synthase. Science 2000, 289, 1933-1937.
(24) Kiefer, J . R.; Pawlitz, J . L.; Moreland, K. T.; Stegeman, R. A.;
Gierse, J . K.; Hood, W. F.; Stevens, A. M.; Goodwin, D. C.;
Rowlinson, S. W.; Marnett, L. J .; Stallings, W. C.; Kurumbail,
R. G. Structural insights into the stereochemistry of the cy-
clooxygenase reaction. Nature (London) 2000, 405, 97-101.