6932
S. Chen et al. / Tetrahedron Letters 49 (2008) 6929–6932
(entry 7) is more acidic at the 2-position, such that three positions
were deuterated, which prolonged the reaction time. In entries 10
and 11, the oxygen atoms are rather poor directing groups, and the
deuteration took place predominantly at the more acidic methyl
group in acetophenone. We also analyzed the extent of deuterium
incorporation of most substrates after 2 days, and the results are
listed in Table 2, during which time the extent of deuterium incor-
poration achieved was 60–70% and the regioselectivity is reason-
ably high. In fact, the rate of deuterium exchange is very low
when approaching the end of the reaction because of the lower
concentration of the deuterium source.
In conclusion, we have synthesized a series of rhodium hydride
complexes and explored their activity in H/D exchange reactions
using acetone-d6 as a deuterium source. They showed reasonable
regioselectivity for substrates demonstrating nitrogen chelation-
assistance. Rhodium complexes with stronger electron-donating
phosphine groups tend to give higher catalytic activity. Develop-
ment of other catalytic reactions using these rhodium hydrides is
currently in progress in our laboratory.
References and notes
1. (a) Thomas, A. F. Deuterium Labeling in Organic Chemistry; Meridith
Corporation: New York, 1971; (b) Junk, T.; Catallo, W. J. Chem. Soc. Rev. 1997,
26, 401; (c) Marcus, D. M.; Mclachlan, K. A.; Wildman, M. A.; Ehresmann, J. O.;
Kletnieks, P. W.; Haw, J. F. Angew. Chem., Int. Ed. 2006, 45, 2941.
2. (a) Corberán, R.; Sanaú, M.; Peris, E. J. Am. Chem. Soc. 2006, 128, 3974; (b)
Rybtchinski, B.; Cohen, R.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am.
Chem. Soc. 2003, 125, 11041; (c) Prechtl, M. H. G.; Hölscher, M.; Ben-David, Y.;
Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. Angew. Chem., Int. Ed. 2007,
46, 2269.
3. Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. J. Angew. Chem., Int. Ed. 2007, 46,
7744.
4. Blake, M. R.; Garnett, J. L.; Gregorw, I. K.; Hannan, W.; Hoa, K.; Long, M. J. Chem.
Soc., Chem. Commun. 1975, 930.
5. Whitmore, B. C.; Eisenberg, R. J. Am. Chem. Soc. 1984, 106, 3225.
6. Lenges, C. P.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 4385.
7. (a) Li, X.; Vogel, T.; Incarvito, C. D.; Crabtree, R. H. Organometallics 2005, 24, 62;
(b) Li, X.; Chen, P.; Faller, J. W.; Crabtree, R. H. Organometallics 2005, 24, 4810.
8. Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan,
S. P. J. Am. Chem. Soc. 2005, 127, 2485.
9. Ellames, G. J.; Gibson, J. S.; Herbert, J. M.; Kerr, W. J.; McNeill, A. H. J. Labelled
Compd. Radiopharm. 2004, 47, 1.
10. Brown, J. A.; Irvine, S.; Kennedy, A. R.; Kerr, W. J. Chem. Commun. 2008, 1115.
11. Arndtsen, B. A.; Bergman, R. G. Science 1995, 270, 1970.
12. Heys, R. J. Chem. Soc., Chem. Commun. 1992, 680.
Acknowledgment
We thank the School of Physical and Mathematical Sciences,
Nanyang Technological University, for financial support.