HydratiVe Rearrangement of 1,1-Diethynylcarbinol Acetates
TABLE 1. Optimization of Catalysts To Construct Cyclopentenone and Allenone
temp (°C)/
time (h)
product (%
isolated yield)
entry
catalyst
AuCl (5 mol %)
solventa
DCE
DCE
DCE
DCE
DCE
DCE
DCE
DCM/water
DCM/water
DCM/water
DCM/water
DCM/water
DCM/water
DCM/water
1
0/0.5
0/0.5
0/0.25
rt/3
0/0.5
0/0.5
rt/3
rt/1.0
rt/1.0
rt/1
0/0.25
rt/4
4a (5)
4a (5)
4a (20)
no reaction
4a (10)
4a (8)
complex mixture
3a (30)
3a (25)
2a (82), 3a (5)
3a (70)
2
AuCl(PPh3) (5 mol %)
3
4
5
AuCl(PPh3)/AgSbF6 (5 mol %)
AuCl(Me2S)/AgSbF6 (5 mol %)
AuBr3 (3 mol %)
6
7
NaAuCl4 ·2H2O (3 mol %)
AgSbF6 (3 mol %)
8
AuBr3 (3 mol %)
9
NaAuCl4 ·2H2O (3 mol %)
AuCl(PPh3)/AgSbF6 (3 mol %)
AuCl(PPh3)/AgSbF6 (6 mol %)
CF3CO2H (10 mol %)
p-toluenesulfonic acid (10 mol %)
CF3SO3H (10 mol %)
10
11
12
13
14
no reaction
no reaction
no reaction
rt/4
rt/4
a DCE and DCM are abbreviations of 1,2-dichloroethane and dichloromethane, respectively.
numerous elegant transformations as well as for the synthesis
of some important natural products and medicinally valuable
compounds.9
electrocyclization of pentadienyl cation must proceed with the
conservation of orbital symmetry, the ability to create new
carbon-carbon bonds requires the proximity between two
reacting triple bonds.12 Herein, we wish to report a new and
facile approach toward the gold-catalyzed water-assisted chemose-
lective syntheses of structurally isomeric R-alkyl R′-acetoxy
cyclopentenones (2) and allenones (3) utilizing 1,1-diethynyl-
carbinol acetates as starting material. The excellent alkynophi-
licity of gold has been well-documented, and propargylic
acetates upon treatment with gold catalyst can be activated for
the 1,2- and/or 1,3-acetate shift depending on the substrates and
reaction conditions.13 To date, numerous novel endeavors have
been made for establishing the central factors which govern such
type of regioselective activation of the propargylic acetates.12a,14
During the course of our studies,10 we became interested in
exploring an efficient transformation involving rearrangement
of 1,1-diethynylcarbinol acetate11 by gold catalysis. Since the
(6) (a) Laschat, S.; Becheanu, A.; Bell, T.; Baro, A. Synlett 2005, 2547–
2570. (b) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800–
1810. (c) Sugihara, T.; Yamaguchi, M.; Nishizawa, M. Chem.sEur. J. 2001, 7,
1589–1595. (d) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263–
3283. (e) Chung, Y. K. Coord. Chem. ReV. 1999, 188, 297–341. (f) Oliver, G.;
Schmalz, H. Angew. Chem., Int. Ed. 1998, 37, 911–914. (g) Schore, N. E. Org.
React. 1991, 40, 1. (h) Pera, N. P.; Nilsson, U. J.; Kann, N. Tetrahedron Lett.
2008, 49, 2820–2823. (i) Kaasalainen, E.; Tois, J.; Russo, L.; Rissanen, K.;
Helaja, J. Tetrahedron Lett. 2006, 47, 5669–5672. (j) Gupta, A. K.; Park, D. I.;
Oh, C. H. Tetrahedron Lett. 2005, 46, 5097–5098. (k) Herndon, J. W.; Zu, J.
Org. Lett. 1999, 1, 15–18. For a review on transition-metal-mediated routes to
cyclopentenones, see: (l) Gibson, S. E.; Lewis, S. E.; Mainolfi, M. J. Organomet.
Chem. 2004, 689, 3873–3890.
Results and Discussion
(7) (a) Little, R. D. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 5, pp 239-270. (b) Chan,
D. M. T. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, 1991; Vol. 5, pp 271-314. (c) Barluenga, J.; Barrio, P.;
Riesgo, L.; Lo´pez, L. A.; Toma´s, M. J. Am. Chem. Soc. 2007, 129, 14422–
14426. (d) Qi, X.; Ready, J. M. Angew. Chem., Int. Ed. 2008, 47, 7068–7070.
(8) (a) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 4130–
4135. (b) Gagnier, S. V.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 4804–
4807. (c) Rigby, J. H.; Wang, Z. Org. Lett. 2003, 5, 263–264. (d) Davie, C. P.;
Danheiser, R. L. Angew. Chem., Int. Ed. 2005, 44, 5867–5870.
(9) (a) Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-
VCH: Weinheim, Germany, 2004; Vol. 1, pp 392-406 and Vol. 2, pp 661-
667 and 889-894. (b) Ma, S.; Li, L. Org. Lett. 2000, 2, 941–944. (c) Kim,
J. T.; Kelin, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98–101.
(d) Hashmi, A. S. K.; Schwarz, L.; Bolte, M. Eur. J. Org. Chem. 2004, 1923–
1935. (e) Jung, M. E.; Min, S. J. J. Am. Chem. Soc. 2005, 127, 10834–10835.
(f) Yoshino, T.; Ng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 14185–
14191. (g) Zhou, C. Y.; Chan, P. W. H.; Che, C. M. Org. Lett. 2006, 8, 325–
328. (h) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72,
1051–1054. (i) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. J.
Org. Chem. 2007, 72, 1604–1608. (j) Marshall, J. A. J. Org. Chem. 2007, 72,
8153–8166. (k) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel’in,
A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440–1452.
All 1,1-diethynylcarbinol acetates 1a-h were prepared from
the corresponding esters via Grignard reaction with ethynyl-
magnesium bromide followed by acetylation. We initiated our
investigation by treating 1a with various gold catalysts, and those
results are summarized in Table 1.
Initially, 1a was treated with different Au(I) catalysts (AuCl,
AuCl(PPh3), AuCl(PPh3) with AgSbF6, AuCl(SMe2) with AgS-
bF6) and Au(III) catalysts (AuBr3 and NaAuCl4 ·2H2O) in dry
1,2-dichloroethane (DCE) at low temperature (0 °C to room
temperature). Allenyne acetate 4a was the only isolated product
in low yields (5-20%). Among Au(I) and Au(III) catalysts,
AuCl(PPh3) with AgSbF6 (entry 3) catalyzed this conversion
significantly. Formation of 4a can be understood by Au-
catalyzed [3,3]-sigmatropic shift of the acetate group (Scheme
1).4h Catalysts AuCl(Me2S) with AgSbF6 (entry 4) and AgSbF6
(10) (a) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H.
Org. Lett. 2005, 7, 5289–5291. (b) Oh, C. H.; Kim, A.; Park, W.; Park, D. I.;
Kim, N. Synlett 2006, 2781–2784. (c) Oh, C. H.; Kim, A. New J. Chem. 2007,
31, 1719–1721.
(11) (a) Kato, K.; Teraguchi, R.; Kusakabe, T.; Motodate, S.; Yamamura,
S.; Mochida, T.; Akita, H. Synlett 2007, 63–66. (b) Kato, K.; Teraguchi, R.;
Yamamura, S.; Mochida, T.; Akita, H.; Peganova, T. A.; Vologdin, N. V.; Gusev,
O. V. Synlett 2007, 638–642.
(12) (a) Shi, F. Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z. X. J. Am. Chem. Soc.
2007, 129, 15503–15512. (b) He, W.; Herrick, I. R.; Atesin, T. A.; Caruana,
P. A.; Kellenberger, C. A.; Frontier, A. J. J. Am. Chem. Soc. 2008, 130, 1003–
1011.
(13) For reviews, see: (a) Hashmi, A. S. K. Gold Bull. 2004, 37, 51–65. (b)
Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180–3211. (c) Li, Z.; Brouwer, C.;
He, C. Chem. ReV. 2008, 108, 3239–3265.
J. Org. Chem. Vol. 74, No. 1, 2009 371